论文标题
$ k^*$和$ ϕ $的分销幅度来自Lattice QCD
Distribution Amplitudes of $K^*$ and $ϕ$ at Physical Pion Mass from Lattice QCD
论文作者
论文摘要
我们使用大动量有效理论介绍了纵向和横向极化的媒介中$ k^*$和$ k^*$和$ ϕ $的第一个晶格QCD计算。我们在三个合奏中使用三叶草费米昂的动作,并具有2+1+1个口味的高度改进的交错夸克(HISQ),由MILC协作,物理pion质量和\ {0.06,0.09,0.12 \} fm lattice间距,并选择三个不同的hadron Moment $ p_z $ p_z = $ g \ \ \ \ \ \ \ \ \ 1.21 1.2 1.21,1.21 1.2 1 1.2 1 1.2 1.2.11,在最近提出的混合方案中,所得的晶格矩阵元素是非扰动重新归一化的。对连续体和无限动量极限进行外推。我们发现,虽然纵向分布幅度往往接近渐近形式,但横向幅度却显着偏离渐近形式。我们的最终结果提供了至关重要的{\ it i n i n i}理论输入,用于分析相关的独家过程。
We present the first lattice QCD calculation of the distribution amplitudes of longitudinally and transversely polarized vector mesons $K^*$ and $ϕ$ using large momentum effective theory. We use the clover fermion action on three ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ) action, generated by MILC collaboration, at physical pion mass and \{0.06, 0.09, 0.12\} fm lattice spacings, and choose three different hadron momenta $P_z=\{1.29, 1.72, 2.15\}$ GeV. The resulting lattice matrix elements are nonperturbatively renormalized in a hybrid scheme proposed recently. An extrapolation to the continuum and infinite momentum limit is carried out. We find that while the longitudinal distribution amplitudes tend to be close to the asymptotic form, the transverse ones deviate rather significantly from the asymptotic form. Our final results provide crucial {\it ab initio} theory inputs for analyzing pertinent exclusive processes.