论文标题

$(\ MATHCAL {F},\ MATHCAL {G})$ - QED有效动作的汇总形式

$(\mathcal{F},\mathcal{G})$-summed form of the QED effective action

论文作者

Navarro-Salas, Jose, Pla, Silvia

论文摘要

我们认为,可以用所有包含field-strength novariants $ \ MATHCAL {f} = \ frac {1} {1} {4} {4} f_ {μν} f^{μLν} f^{μ0} = g^{g^{g = g \ g \ g \ g \ g \ g \ g { \ frac {1} {4} \ tilde f_ {μν} f^{μν}(x)$,包括那些还具有电磁场强度的衍生物。该部分重新召集的恰好以与Heisenberg-euler Lagrangian密度相同的因素封装,只是现在电场和磁场可以任意取决于时空坐标。我们为这种猜想提供了有力的证据,这在适当的时间在第六阶证明了这一点。此外,作为副产品,我们产生了一些可解决的电磁背景。我们还讨论了施温格公式对非恒定电场引起的配对产生的概括的含义。最后,我们简要概述了在重力存在下的扩展。

We conjecture that the proper-time series expansion of the one-loop effective Lagrangian of quantum electrodynamics can be summed in all terms containing the field-strength invariants $\mathcal{F} = \frac{1}{4} F_{μν}F^{μν} (x)$, $\mathcal{G}= \frac{1}{4} \tilde F_{μν}F^{μν}(x)$, including those also possessing derivatives of the electromagnetic field strength. This partial resummation is exactly encapsulated in a factor with the same form as the Heisenberg-Euler Lagrangian density, except that now the electric and magnetic fields can depend arbitrarily on spacetime coordinates. We provide strong evidence for this conjecture, which is proved to sixth order in the proper time. Furthermore, and as a byproduct, we generate some solvable electromagnetic backgrounds. We also discuss the implications for a generalization of the Schwinger formula for pair production induced by nonconstant electric fields. Finally, we briefly outline the extension of these results in the presence of gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源