论文标题
确定性的打击时间矩方法,用于在图上膨胀种子。
A Deterministic Hitting-Time Moment Approach to Seed-set Expansion over a Graph
论文作者
论文摘要
我们介绍了HITMIX,这是一种用于网络种子集扩展的新技术,即确定与给定的顶点种子相关的一组图形顶点的问题。我们使用图表的击球时间分布的矩来量化每个非种子顶点与种子集的关系。这涉及对击球时间矩的确定性计算,该计算在图表的数量中可扩展,因此避免在图上直接对马尔可夫链采样。这些矩用于拟合混合模型,以估计应将每个非种子顶点与种子组分组的概率。这种成员资格概率使我们能够以统计上的方式对非种子和阈值进行分类。据我们所知,HITMIX是种子集扩展的第一个完整的统计模型,可以给出顶点级会员概率。尽管HITMIX是一种全局方法,但其实践中的线性计算复杂性可以在大图上进行计算。我们具有高性能的实现,我们在随机块模型和SNAP存储库中的小世界网络上提出了计算结果。此问题的最新技术是最近开发的本地方法的集合,我们表明,如果可以使用我们的全局方法,则可以在解决方案质量方面具有不同的优势。实际上,如果可以将图表存储在内存中,我们希望能够运行hitmix。
We introduce HITMIX, a new technique for network seed-set expansion, i.e., the problem of identifying a set of graph vertices related to a given seed-set of vertices. We use the moments of the graph's hitting-time distribution to quantify the relationship of each non-seed vertex to the seed-set. This involves a deterministic calculation for the hitting-time moments that is scalable in the number of graph edges and so avoids directly sampling a Markov chain over the graph. The moments are used to fit a mixture model to estimate the probability that each non-seed vertex should be grouped with the seed set. This membership probability enables us to sort the non-seeds and threshold in a statistically-justified way. To the best of our knowledge, HITMIX is the first full statistical model for seed-set expansion that can give vertex-level membership probabilities. While HITMIX is a global method, its linear computation complexity in practice enables computations on large graphs. We have a high-performance implementation, and we present computational results on stochastic blockmodels and a small-world network from the SNAP repository. The state of the art in this problem is a collection of recently developed local methods, and we show that distinct advantages in solution quality are available if our global method can be used. In practice, we expect to be able to run HITMIX if the graph can be stored in memory.