论文标题
活跃物质系统中的相位行为的机器学习
Machine Learning for Phase Behavior in Active Matter Systems
论文作者
论文摘要
我们证明,深度学习技术可用于预测活性布朗颗粒(ABP)悬浮液中的运动相分离(MIP),通过在粒子水平上创建相位概念。使用完全连接的网络与图神经网络结合使用,我们使用各个粒子特征来预测A相属的属性。由此,我们能够计算稀释颗粒的比例,以确定系统是否处于均匀稀释,致密或共存区域。将我们的预测与根据模拟计算的MIP二键进行比较。两者之间的强烈一致性表明,机器学习提供了一种确定ABP相位行为的有效方法,并且可能对确定更复杂的相图有用。
We demonstrate that deep learning techniques can be used to predict motility induced phase separation (MIPS) in suspensions of active Brownian particles (ABPs) by creating a notion of phase at the particle level. Using a fully connected network in conjunction with a graph neural network we use individual particle features to predict to which phase a particle belongs. From this, we are able to compute the fraction of dilute particles to determine if the system is in the homogeneous dilute, dense, or coexistence region. Our predictions are compared against the MIPS binodal computed from simulation. The strong agreement between the two suggests that machine learning provides an effective way to determine the phase behavior of ABPs and could prove useful for determining more complex phase diagrams.