论文标题
具有多端的自我收缩术的不结开的结果
An unknottedness result for self shrinkers with multiple ends
论文作者
论文摘要
在本文中,我们证明了在$ \ mathbb {r}^3 $中具有多个渐近圆锥形末端的自我收缩术的无结相结果,该末端使用均值曲率流以自然意义地绑定手柄机构。作为这项工作和以前的工作的必然,毫无疑问的圆锥形自我收缩剂没有打结。
In this article we prove an unknottedness result for self shrinkers in $\mathbb{R}^3$ with multiple asymptotically conical ends which bound a handlebody in a natural sense, using the mean curvature flow. As a corollary of this and previous work, asymptotically conical self shrinkers with two ends are unknotted.