论文标题
复杂双曲几何形状中的轨道和轨道
Orbifolds and orbibundles in complex hyperbolic geometry
论文作者
论文摘要
我们使用差异学从几何观点开始发展轨道理论。我们的目标之一是提出新的工具,允许计算超过$ 2 $ -Orbifolds的复杂双曲光盘轨道的不变,几何形状出现在$ 4 $ -MANIFOLDS中。这些不变的是圆盘轨道的Euler数量,$ \ Mathrm {pu}(2,1)$的托莱多不变式 - $ 2 $ -ORBIFOLD组的表示。
We develop the theory of orbibundles from a geometrical viewpoint using diffeology. One of our goals is to present new tools allowing to calculate invariants of complex hyperbolic disc orbibundles over $2$-orbifolds appearing in the geometry of $4$-manifolds. These invariants are the Euler number of disc orbibundles and the Toledo invariant of $\mathrm{PU}(2,1)$-representations of $2$-orbifold groups.