论文标题
在低温下驱动模型中扰动的时空传播:OTOC的确切结果
Spatio-temporal spread of perturbations in power-law models at low temperatures: Exact results for OTOC
论文作者
论文摘要
我们为超级订单换向器(OTOC)的经典版本提供了确切的结果,该家族由一个维度的$ n $颗粒组成,并受外部谐波潜力限制。这些粒子是通过幂律的相互作用的相互作用的$ \ propto \ sum _ {\ supAck {i,j = 1(i \ neq j)}}^n | x_i-x_j |^|^{ - k} $ $ $ $ $ $ $ $ k> 1 $ x_i $是$ x_i $的位置。我们在低温下为有限$ n $的OTOC提供了数值结果,因此在许多身体基态周围的线性化动力学近似系统中,该系统就可以很好地近似。在很大的限制中,我们在没有外部谐波电位的情况下计算基础状态分散关系,并使用它来达到OTOC的分析结果。我们发现我们的分析结果与数字之间有着极好的一致性。我们进一步在限制中获得分析结果,在分散关系中仅包括线性和领先的非线性(动量)术语。所得的OTOC与“光锥”边缘附近的数字一致。我们在OTOC下方和高于$ k = 3 $的OTOC中发现了非常不同的功能,从非辅助行为($ 1 <k <3 $)到通风的通用类($ k> 3 $)。我们为CASE $ K = 2 $提供了一些其他丰富功能,这些功能源于Calogero-Moser模型的潜在集成性。我们提出了一种现场理论方法,该方法还有助于理解OTOC的某些方面,例如音速。我们的发现是朝着对远程相互作用系统中扰动的时空传播的更一般理解迈出的一步。
We present exact results for the classical version of the Out-of-Time-Order Commutator (OTOC) for a family of power-law models consisting of $N$ particles in one dimension and confined by an external harmonic potential. These particles are interacting via power-law interaction of the form $\propto \sum_{\substack{i, j=1 (i\neq j)}}^N|x_i-x_j|^{-k}$ $\forall$ $k>1$ where $x_i$ is the position of the $i^\text{th}$ particle. We present numerical results for the OTOC for finite $N$ at low temperatures and short enough times so that the system is well approximated by the linearized dynamics around the many body ground state. In the large-$N$ limit, we compute the ground-state dispersion relation in the absence of external harmonic potential exactly and use it to arrive at analytical results for OTOC. We find excellent agreement between our analytical results and the numerics. We further obtain analytical results in the limit where only linear and leading nonlinear (in momentum) terms in the dispersion relation are included. The resulting OTOC is in agreement with numerics in the vicinity of the edge of the "light cone". We find remarkably distinct features in OTOC below and above $k=3$ in terms of going from non-Airy behaviour ($1<k<3$) to an Airy universality class ($k>3$). We present certain additional rich features for the case $k=2$ that stem from the underlying integrability of the Calogero-Moser model. We present a field theory approach that also assists in understanding certain aspects of OTOC such as the sound speed. Our findings are a step forward towards a more general understanding of the spatio-temporal spread of perturbations in long-range interacting systems.