论文标题
恶魔的拓扑peierls绝缘子和peierls supersolids的楼梯
Devil's staircase of topological Peierls insulators and Peierls supersolids
论文作者
论文摘要
我们考虑了XXZ-Bose-Hubbard模型描述的一维晶格上的超电骨气原子的混合物,其中一种物种的隧道取决于第二个深深捕获的物种的旋转状态。我们展示了自由度自由度之间的抗磁相互作用的包含如何通过电子phonon系统中的PEIERLS机制的波能类似物产生魔鬼的对称性保护拓扑阶段的魔鬼楼梯。这些拓扑PEIERLS绝缘子是对称性拓扑阶段的示例,在这些拓扑阶段中,由于自发对称性破坏了与拓扑特性(例如分数化边缘状态)的远距离顺序。此外,我们确定了不需要远距离相互作用的超olid相的区域。它们是由于PEIERL不可通信的机制而出现的,在该机制中,竞争命令修改了Peierls绝缘子的潜在晶体结构,从而变成了超氟。我们的工作表明,超电原子系统提供的可能性可调查与天然材料中发现的密切相关的拓扑现象。
We consider a mixture of ultracold bosonic atoms on a one-dimensional lattice described by the XXZ-Bose-Hubbard model, where the tunneling of one species depends on the spin state of a second deeply trapped species. We show how the inclusion of antiferromagnetic interactions among the spin degrees of freedom generates a Devil's staircase of symmetry-protected topological phases for a wide parameter regime via a bosonic analog of the Peierls mechanism in electron-phonon systems. These topological Peierls insulators are examples of symmetry-breaking topological phases, where long-range order due to spontaneous symmetry breaking coexists with topological properties such as fractionalized edge states. Moreover, we identify a region of supersolid phases that do not require long-range interactions. They appear instead due to a Peierls incommensurability mechanism, where competing orders modify the underlying crystalline structure of Peierls insulators, becoming superfluid. Our work show the possibilities that ultracold atomic systems offer to investigate strongly-correlated topological phenomena beyond those found in natural materials.