论文标题
lagrangian二元性用于非convex优化问题,带有抽象凸功能
Lagrangian duality for nonconvex optimization problems with abstract convex functions
论文作者
论文摘要
我们研究Lagrangian双重性,以解决非凸优化问题。为此,我们使用$φ$ -Convexity理论和Minimax定理,用于$φ$ -CONVEX函数。我们为零二元性差距和二重性提供条件。在可以应用二元性结果的函数类别中,是构造的功能,直流函数,弱凸功能和paraconvex函数。
We investigate Lagrangian duality for nonconvex optimization problems. To this aim we use the $Φ$-convexity theory and minimax theorem for $Φ$-convex functions. We provide conditions for zero duality gap and strong duality. Among the classes of functions, to which our duality results can be applied, are prox-bounded functions, DC functions, weakly convex functions and paraconvex functions.