论文标题

lagrangian二元性用于非convex优化问题,带有抽象凸功能

Lagrangian duality for nonconvex optimization problems with abstract convex functions

论文作者

Bednarczuk, Ewa M., Syga, Monika

论文摘要

我们研究Lagrangian双重性,以解决非凸优化问题。为此,我们使用$φ$ -Convexity理论和Minimax定理,用于$φ$ -CONVEX函数。我们为零二元性差距和二重性提供条件。在可以应用二元性结果的函数类别中,是构造的功能,直流函数,弱凸功能和paraconvex函数。

We investigate Lagrangian duality for nonconvex optimization problems. To this aim we use the $Φ$-convexity theory and minimax theorem for $Φ$-convex functions. We provide conditions for zero duality gap and strong duality. Among the classes of functions, to which our duality results can be applied, are prox-bounded functions, DC functions, weakly convex functions and paraconvex functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源