论文标题

通过使用等级保存结构性故障时间模型来评估治疗阶段的贡献

Assessing contribution of treatment phases through tipping point analyses using rank preserving structural failure time models

论文作者

Bhattacharya, Sudipta, Dey, Jyotirmoy

论文摘要

在临床试验中,有时会在多个治疗阶段(例如,伴随和维持阶段)的护理或对照疗法中添加实验治疗,以改善患者的结果。当新方案在这种情况下对控制疗法提供有意义的好处时,很难单独评估每个阶段对观察到的整体效应的贡献。本文提供了一种方法,可以通过使用高级结构 - 结构 - 实用时间(RPSFT)建模来对这种情况下特定治疗阶段的重要性进行评估的重要性。在怀疑治疗组之间存在统计学上显着差异的情况下,通常使用倾斜点分析可能是由于缺失或未观察到的数据而不是实际治疗效果的结果。具有等级结构的结构性时间建模是一种因果推断的方法,该方法通常用于在临床试验中调整治疗转换,并随时间到事件终点。本文提出的方法是对这两个思想的融合,以研究感兴趣的治疗阶段对包括多个治疗阶段的疗法的影响的贡献。我们提供了该方法的两个不同变体,与感兴趣的两个不同效果相对应。根据推论目标,我们提供两个不同的临界点阈值。提出的方法是通过最近结束的现实生活中3阶段癌症临床试验的数据进行动机和说明的。然后,我们以几个考虑因素和建议得出结论。

In clinical trials, an experimental treatment is sometimes added on to a standard of care or control therapy in multiple treatment phases (e.g., concomitant and maintenance phases) to improve patient outcomes. When the new regimen provides meaningful benefit over the control therapy in such cases, it proves difficult to separately assess the contribution of each phase to the overall effect observed. This article provides an approach for assessing the importance of a specific treatment phase in such a situation through tipping point analyses of a time-to-event endpoint using rank-preserving-structural-failure-time (RPSFT) modeling. A tipping-point analysis is commonly used in situations where it is suspected that a statistically significant difference between treatment arms could be a result of missing or unobserved data instead of a real treatment effect. Rank-preserving-structural-failure-time modeling is an approach for causal inference that is typically used to adjust for treatment switching in clinical trials with time to event endpoints. The methodology proposed in this article is an amalgamation of these two ideas to investigate the contribution of a treatment phase of interest to the effect of a regimen comprising multiple treatment phases. We provide two different variants of the method corresponding to two different effects of interest. We provide two different tipping point thresholds depending on inferential goals. The proposed approaches are motivated and illustrated with data from a recently concluded, real-life phase 3 cancer clinical trial. We then conclude with several considerations and recommendations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源