论文标题
在动态环境中的时空占用预测的双孔弯曲
Double-Prong ConvLSTM for Spatiotemporal Occupancy Prediction in Dynamic Environments
论文作者
论文摘要
预测环境的未来占用状态对于实现自动驾驶汽车的明智决定很重要。占用预测中的常见挑战包括消失的动态对象和模糊的预测,尤其是对于长期预测范围。在这项工作中,我们提出了一个双式神经网络结构,以预测占用状态的时空演化。一个插脚致力于预测移动的自我车辆将如何观察到静态环境。另一个插脚预测环境中的动态对象将如何移动。在现实WAYMO开放数据集上进行的实验表明,两个插脚的融合输出能够保留动态对象并在预测中降低比基线模型更长的预测时间范围。
Predicting the future occupancy state of an environment is important to enable informed decisions for autonomous vehicles. Common challenges in occupancy prediction include vanishing dynamic objects and blurred predictions, especially for long prediction horizons. In this work, we propose a double-prong neural network architecture to predict the spatiotemporal evolution of the occupancy state. One prong is dedicated to predicting how the static environment will be observed by the moving ego vehicle. The other prong predicts how the dynamic objects in the environment will move. Experiments conducted on the real-world Waymo Open Dataset indicate that the fused output of the two prongs is capable of retaining dynamic objects and reducing blurriness in the predictions for longer time horizons than baseline models.