论文标题

Lipschitz连续梯度对函数的限制,全局优化

Constrained, Global Optimization of Functions with Lipschitz Continuous Gradients

论文作者

Vinod, Abraham P., Israel, Arie, Topcu, Ufuk

论文摘要

我们提出了两种一阶顺序优化算法,以解决受约束的优化问题。我们考虑具有先验未知的,非凸的目标和具有Lipschitz连续梯度的约束功能的黑框设置。提出的算法平衡了对先验未知的可行空间的探索与在预先指定的有限数量的一阶甲骨文呼叫中追求全球最优性。第一种算法可容纳一个不可行的开始,并提供了近乎最佳的全球解决方案或建立了不可行。但是,该算法在搜索过程中可能会产生不可行的迭代。对于强烈的约束函数和可行的初始解决方案猜测,第二算法返回一个近乎最佳的全局解决方案而没有任何约束。与现有方法相反,这两种算法还计算每种迭代时的全局次优界限。我们还表明,该算法可以满足计算出的解决方案中用户指定的公差,并且在Oracle呼叫大量优化问题的甲骨文中近距离复杂性。我们通过利用Lipschitz连续梯度性能提供的结构来提出算法的可拖动实现。

We present two first-order, sequential optimization algorithms to solve constrained optimization problems. We consider a black-box setting with a priori unknown, non-convex objective and constraint functions that have Lipschitz continuous gradients. The proposed algorithms balance the exploration of the a priori unknown feasible space with the pursuit of global optimality within in a pre-specified finite number of first-order oracle calls. The first algorithm accommodates an infeasible start, and provides either a near-optimal global solution or establishes infeasibility. However, the algorithm may produce infeasible iterates during the search. For a strongly-convex constraint function and a feasible initial solution guess, the second algorithm returns a near-optimal global solution without any constraint violation. In contrast to existing methods, both of the algorithms also compute global suboptimality bounds at every iteration. We also show that the algorithms can satisfy user-specified tolerances in the computed solution with near-optimal complexity in oracle calls for a large class of optimization problems. We propose tractable implementations of the algorithms by exploiting the structure afforded by the Lipschitz continuous gradient property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源