论文标题
复杂网络的可压缩性
Compressibility of complex networks
论文作者
论文摘要
许多复杂的网络取决于生物实体的保存。从人类认知到进化,必须首先对这些实体进行编码,然后在明显的资源约束下复制这些网络。生存的网络是那些可以受到约束编码的网络,或者换句话说,是可压缩的。但是网络有多可压缩?哪些功能使一个网络比另一个网络更可压缩?在这里,我们通过将网络作为信息源建模来回答这些问题,然后再使用速度延伸理论来压缩它们。每个网络都会产生一个独特的速率延伸曲线,该曲线指定了以给定的描述规模保持的最小信息。然后出现了一个自然定义,以用于网络的可压缩性:可以通过压缩来删除的信息量,在所有尺度上平均。分析一系列真实和模型网络,我们证明可压缩性随两个常见的网络属性而增加:传递性(或聚类)和程度异质性。这些结果表明,层次组织(以模块化结构和异质程度为特征)有助于复杂网络中的压缩。通常,我们的框架阐明了网络的结构与其被压缩能力之间的相互作用,从而可以调查压缩在塑造现实世界网络中的作用。
Many complex networks depend upon biological entities for their preservation. Such entities, from human cognition to evolution, must first encode and then replicate those networks under marked resource constraints. Networks that survive are those that are amenable to constrained encoding, or, in other words, are compressible. But how compressible is a network? And what features make one network more compressible than another? Here we answer these questions by modeling networks as information sources before compressing them using rate-distortion theory. Each network yields a unique rate-distortion curve, which specifies the minimal amount of information that remains at a given scale of description. A natural definition then emerges for the compressibility of a network: the amount of information that can be removed via compression, averaged across all scales. Analyzing an array of real and model networks, we demonstrate that compressibility increases with two common network properties: transitivity (or clustering) and degree heterogeneity. These results indicate that hierarchical organization -- which is characterized by modular structure and heterogeneous degrees -- facilitates compression in complex networks. Generally, our framework sheds light on the interplay between a network's structure and its capacity to be compressed, enabling investigations into the role of compression in shaping real-world networks.