论文标题
早期流行病的随机动力学:建立的可能性,初始增长率和感染群集大小时大小
The stochastic dynamics of early epidemics: probability of establishment, initial growth rate, and infection cluster size at first detection
论文作者
论文摘要
新兴的流行病和局部感染簇最初容易产生随机作用,这些效应可以实质上影响流行轨迹。尽管许多研究致力于确定的流行病的确定性制度,但对流行病生长初始阶段的数学描述相对较少。在这里,我们回顾了随着时间的流行大小的现有数学结果,并得出了新的结果,以阐明由单个感染者启动的感染群集的早期动力学。我们表明,最终起飞的流行病的最初生长是由随机性加速的。这些结果对于改善早期聚类检测和控制至关重要。作为应用程序,我们根据测试工作计算感染群集中感染个体的第一个检测时间的分布,并估计2020年8月初,Alpha检测到的Alpha检测到的SARS-COV-2变体首次在2020年8月初出现在英国。我们还计算了一个最小的测试频率,以检测出较小的固定量,然后它们超过了给定的阈值。这些结果改善了我们对早期流行病的理论理解,将对当地传染病簇的研究和控制有用。
Emerging epidemics and local infection clusters are initially prone to stochastic effects that can substantially impact the epidemic trajectory. While numerous studies are devoted to the deterministic regime of an established epidemic, mathematical descriptions of the initial phase of epidemic growth are comparatively rarer. Here, we review existing mathematical results on the epidemic size over time, and derive new results to elucidate the early dynamics of an infection cluster started by a single infected individual. We show that the initial growth of epidemics that eventually take off is accelerated by stochasticity. These results are critical to improve early cluster detection and control. As an application, we compute the distribution of the first detection time of an infected individual in an infection cluster depending on the testing effort, and estimate that the SARS-CoV-2 variant of concern Alpha detected in September 2020 first appeared in the United Kingdom early August 2020. We also compute a minimal testing frequency to detect clusters before they exceed a given threshold size. These results improve our theoretical understanding of early epidemics and will be useful for the study and control of local infectious disease clusters.