论文标题

马戏团Anymal:四肢学习四肢的肢体操纵

Circus ANYmal: A Quadruped Learning Dexterous Manipulation with Its Limbs

论文作者

Shi, Fan, Homberger, Timon, Lee, Joonho, Miki, Takahiro, Zhao, Moju, Farshidian, Farbod, Okada, Kei, Inaba, Masayuki, Hutter, Marco

论文摘要

四足动物的机器人在缺乏操纵技巧的同时,在运动任务上熟练,更不用说灵活的操纵能力了。受动物行为的启发以及多腿运动和多指手法之间的双重性,我们在四足动物的机器人(Anymal)上展示了马戏团球挑战。我们采用一种无模型的加固学习方法来训练一项深入的政策,使机器人能够使用其四肢来平衡和操纵轻型球,而无需任何接触测量传感器。该策略是在模拟中训练的,在该策略中,我们在操作过程中随机对许多物理属性进行了随机噪声和注入随机扰动力,并在实际机器人上实现零拍摄的部署而没有任何调整。在硬件实验中,最大旋转速度为15度/s,在外部戳记下显示出强大的恢复。据我们所知,这是第一批作品展示了在真正的四足动物机器人上的灵巧动态操纵。

Quadrupedal robots are skillful at locomotion tasks while lacking manipulation skills, not to mention dexterous manipulation abilities. Inspired by the animal behavior and the duality between multi-legged locomotion and multi-fingered manipulation, we showcase a circus ball challenge on a quadrupedal robot, ANYmal. We employ a model-free reinforcement learning approach to train a deep policy that enables the robot to balance and manipulate a light-weight ball robustly using its limbs without any contact measurement sensor. The policy is trained in the simulation, in which we randomize many physical properties with additive noise and inject random disturbance force during manipulation, and achieves zero-shot deployment on the real robot without any adjustment. In the hardware experiments, dynamic performance is achieved with a maximum rotation speed of 15 deg/s, and robust recovery is showcased under external poking. To our best knowledge, it is the first work that demonstrates the dexterous dynamic manipulation on a real quadrupedal robot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源