论文标题

自主赛车的迭代半参数模型学习

Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing

论文作者

Georgiev, Ignat, Chatzikomis, Christoforos, Völkl, Timo, Smith, Joshua, Mistry, Michael

论文摘要

准确地对机器人动力学进行建模对于安全有效的运动控制至关重要。在本文中,我们开发并应用了具有神经网络的迭代学习半参数模型,以使用模型预测控制器(MPC)进行自主赛车的任务。我们提出了一种新型的非线性半参数动力学模型,其中我们用参数模型表示已知的动力学,而神经网络捕获了未知动力学。我们表明,与纯粹的参数模型相比,我们的模型可以更准确地学习,并且比纯粹的非参数模型更好地概括了,这使得它非常适合从整个状态空间中收集数据的现实应用程序。我们提出了一个系统,该系统将模型在预录的数据上进行引导,然后在运行时进行迭代更新。然后,我们将迭代学习方法应用于自动赛车的模拟问题,并表明它可以安全地适应在线修改动态,甚至比在手动驾驶数据中训练的模型更好的性能。

Accurately modeling robot dynamics is crucial to safe and efficient motion control. In this paper, we develop and apply an iterative learning semi-parametric model, with a neural network, to the task of autonomous racing with a Model Predictive Controller (MPC). We present a novel non-linear semi-parametric dynamics model where we represent the known dynamics with a parametric model, and a neural network captures the unknown dynamics. We show that our model can learn more accurately than a purely parametric model and generalize better than a purely non-parametric model, making it ideal for real-world applications where collecting data from the full state space is not feasible. We present a system where the model is bootstrapped on pre-recorded data and then updated iteratively at run time. Then we apply our iterative learning approach to the simulated problem of autonomous racing and show that it can safely adapt to modified dynamics online and even achieve better performance than models trained on data from manual driving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源