论文标题
分子密度功能理论的无变异方法:数据驱动的随机优化
Variation Free Approach for Molecular Density Functional Theory: Data-driven Stochastic Optimization
论文作者
论文摘要
密度功能理论(DFT)是描述多种纳米级现象的有效仪器:润湿过渡,毛细管凝结,吸附等。在本文中,我们建议一种使用DFT中DFT中获得平衡分子流体密度的方法,而无需计算自由能量变化 - 变量自由化 - 变量 - 变量 - 变量 - 变量 - 变量 - 变量函数理论(vffffffffdfft)。该技术可用于探索具有复杂类型的相互作用,其他约束和加快计算的限制流体,这在反问题中可能至关重要。 VF-DFT方法中的流体密度表示为有限的基集功能集对分解。我们应用主组件分析(PCA)从密度函数中提取基本模式,并在构建一组基础函数中考虑到它们。通过随机优化算法寻求流体密度的分解系数:遗传算法(GA),粒子群优化(PSO),以最大程度地减少系统的自由能。在这项工作中,研究了两种不同的液体:在77.4 K和氩气的温度下,毛孔为3.6 nm的氮,并比较优化算法的性能。我们还基于随机优化方法和经典的PICARD迭代方法介绍了混合密度功能理论(H-DFT)方法,以从物理上适当的溶液开始找到平衡流体密度。 PICARD迭代和随机算法的组合有助于显着加快系统中平衡密度的计算,而不会失去溶液的质量,尤其是在具有高相对压力和表达的分层结构的情况下。
Density functional theory (DFT) is an efficient instrument for describing a wide range of nanoscale phenomena: wetting transition, capillary condensation, adsorption, etc. In this paper, we suggest a method for obtaining the equilibrium molecular fluid density in a nanopore using DFT without calculating the free energy variation - Variation Free Density Functional Theory (VF-DFT). This technique can be used to explore confined fluids with a complex type of interactions, additional constraints and to speed up calculations, which might be crucial in an inverse problems. The fluid density in VF-DFT approach is represented as a decomposition over a limited set of basis functions. We applied Principal Component Analysis (PCA) to extract the basic patterns from the density function and take them into account in the construction of a set of basis functions. The decomposition coefficients of the fluid density by the basis were sought by stochastic optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO) to minimize the free energy of the system. In this work, two different fluids were studied: nitrogen at a temperature of 77.4 K and argon 87.3 K, at a pore of 3.6 nm, and the performance of optimization algorithms was compared. We also introduce the Hybrid Density Functional Theory (H-DFT) approach based on stochastic optimization methods and the classical Picard iteration method to find the equilibrium fluid density starting from the physically appropriate solution. The combination of Picard iteration and stochastic algorithms helps to significantly speed up the calculations of equilibrium density in the system without losing the quality of the solution, especially in cases with the high relative pressure and expressed layering structure.