论文标题
耦合旋转1/2抗铁磁链CS $ _2 $ lirucl $ _6 $与部分无序的水晶格子
Coupled spin-1/2 antiferromagnetic chain Cs$_2$LiRuCl$_6$ with partially disordered crystal lattice
论文作者
论文摘要
我们确定了CS $ _2 $ lirucl $ _6 $的晶体结构,该$ _6 $首先在这项工作中合成,并研究了其磁性。 CS $ _2 $ lirucl $ _6 $具有由面部共享rucl $ _6 $和licl $ _6 $ octahedra组成的六边形结构。在三分之二的结构链中,Ru $^{3+} $和li $^+$站点几乎是订购的,而在其他链中,它们的站点是无序的。这种情况类似于三角形晶格上的抗铁磁ising模型的基态。使用电子顺磁共振,我们评估了Ru $^{3+} $的$ G $因子,有效的Spin-1/2为$ g_c \,{=} \,2.72 $和$ g_ {ab {ab} \,{=} \,{=} \,磁场$ h $ parallel and perpenlical和perpellical to $ $ cumis to $ cumis cobis for Maginate Fields $ s.50 $。 $ h \,{\ Parallel} \,c $和$ h \,{\ perp} \,c $的磁化曲线是高度各向异性的。但是,这些磁化强度曲线大致在由$ g $因子归一化时重合。从磁化和特定的热结果中可以发现,CS $ _2 $ lirucl $ _6 $可以描述为一种耦合的一维$ s \,{=} \,1/2 $ heisenberg类,类似于$ j/k _ {发生在$ t _ {\ rm n} \,{=} \,0.48 $K。$ h \,{\ Parallel} \,C $的磁相图。
We determined the crystal structure of Cs$_2$LiRuCl$_6$, which was synthesized first in this work, and investigated its magnetic properties. Cs$_2$LiRuCl$_6$ has a hexagonal structure composed of linear chains of face-sharing RuCl$_6$ and LiCl$_6$ octahedra. In two-thirds of the structural chains, Ru$^{3+}$ and Li$^+$ sites are almost ordered, while in the other chains their sites are disordered. This situation is analogous to the ground state of the antiferromagnetic Ising model on a triangular lattice. Using electron paramagnetic resonance, we evaluated the $g$ factors of Ru$^{3+}$ with effective spin-1/2 as $g_c\,{=}\,2.72$ and $g_{ab}\,{=}\,1.50$ for magnetic fields $H$ parallel and perpendicular to the $c$ axis, respectively. Magnetization curves for $H\,{\parallel}\,c$ and $H\,{\perp}\,c$ are highly anisotropic. However, these magnetization curves approximately coincide when normalized by the $g$ factors. It was found from the magnetization and specific heat results that Cs$_2$LiRuCl$_6$ can be described as a coupled one-dimensional $S\,{=}\,1/2$ Heisenberg-like antiferromagnet with $J/k_{\rm B}\,{\simeq}\,3.7$ K. Three-dimensional ordering occurs at $T_{\rm N}\,{=}\,0.48$ K. A magnetic phase diagram for $H\,{\parallel}\,c$ is also presented.