论文标题

与体积传感器合作认知和感知的功能共享和集成

Feature Sharing and Integration for Cooperative Cognition and Perception with Volumetric Sensors

论文作者

Marvasti, Ehsan Emad, Raftari, Arash, Marvasti, Amir Emad, Fallah, Yaser P., Guo, Rui, Lu, Hongsheng

论文摘要

计算和通信系统的最新进展导致引入了高性能的神经网络和高速无线车辆通信网络。结果,已经出现了诸如合作感和认知之类的新技术,通过为检测部分遮挡的靶标的解决方案提供解决方案并扩大感应范围,从而解决了感觉设备的固有局限性。但是,设计可靠的合作认知或感知系统需要解决由于不同来源共享的数据之间有限的网络资源和差异所带来的挑战。在本文中,我们研究了不同合作感知技术的要求,局限性和性能,并对深度分享(DFS)的概念进行了深入分析。我们探索不同的合作对象检测设计,并根据平均精度评估其性能。我们将volony数据集用于我们的实验研究。结果证实,DFS方法对GPS噪声引起的定位误差明显较小。此外,结果证明,由于在场景中添加更多合作参与者而引起的DFS方法的检测增益与原始信息共享技术相当,而DFS可以灵活地设计灵活性,以满足交流要求。

The recent advancement in computational and communication systems has led to the introduction of high-performing neural networks and high-speed wireless vehicular communication networks. As a result, new technologies such as cooperative perception and cognition have emerged, addressing the inherent limitations of sensory devices by providing solutions for the detection of partially occluded targets and expanding the sensing range. However, designing a reliable cooperative cognition or perception system requires addressing the challenges caused by limited network resources and discrepancies between the data shared by different sources. In this paper, we examine the requirements, limitations, and performance of different cooperative perception techniques, and present an in-depth analysis of the notion of Deep Feature Sharing (DFS). We explore different cooperative object detection designs and evaluate their performance in terms of average precision. We use the Volony dataset for our experimental study. The results confirm that the DFS methods are significantly less sensitive to the localization error caused by GPS noise. Furthermore, the results attest that detection gain of DFS methods caused by adding more cooperative participants in the scenes is comparable to raw information sharing technique while DFS enables flexibility in design toward satisfying communication requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源