论文标题

来自Hartle-Hawking波函数的路径综合优化

Path-Integral Optimization from Hartle-Hawking Wave Function

论文作者

Boruch, Jan, Caputa, Pawel, Takayanagi, Tadashi

论文摘要

我们提出了使用Hartle-Hawking Wave Wave功能在Anti-DE Sitter SpaceTimes中使用Hartle-Hawking Wave函数进行保形场理论中的路径优化优化的重力双重描述。我们表明,Hartle-Hawking波函数的最大化等于路径综合优化过程。也就是说,波函数的变化导致了一个约束,相当于散装切片上的诺伊曼边界条件,其经典解决方案从共同场理论中的路径综合优化重现了指标。在采用半古典hartle-hawking波函数的边界极限之后,我们在二维以及其较高和较低维度的概括性上重现了路径综合复杂性动作。我们还讨论了整形田间理论路径综合分析的全息时间的出现。

We propose a gravity dual description of the path-integral optimization in conformal field theories arXiv:1703.00456, using Hartle-Hawking wave functions in anti-de Sitter spacetimes. We show that the maximization of the Hartle-Hawking wave function is equivalent to the path-integral optimization procedure. Namely, the variation of the wave function leads to a constraint, equivalent to the Neumann boundary condition on a bulk slice, whose classical solutions reproduce metrics from the path-integral optimization in conformal field theories. After taking the boundary limit of the semi-classical Hartle-Hawking wave function, we reproduce the path-integral complexity action in two dimensions as well as its higher and lower dimensional generalizations. We also discuss an emergence of holographic time from conformal field theory path-integrals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源