论文标题

超越Planck VII。 CMB实验的增益和绝对校准的贝叶斯估计

BeyondPlanck VII. Bayesian estimation of gain and absolute calibration for CMB experiments

论文作者

Gjerløw, E., Ihle, H. T., Galeotta, S., Andersen, K. J., Aurlien, R., Banerji, R., Bersanelli, M., Bertocco, S., Brilenkov, M., Carbone, M., Colombo, L. P. L., Eriksen, H. K., Foss, M. K., Franceschet, C., Fuskeland, U., Galloway, M., Gerakakis, S., Hensley, B., Herman, D., Iacobellis, M., Ieronymaki, M., Jewell, J. B., Karakci, A., Keihänen, E., Keskitalo, R., Maggio, G., Maino, D., Maris, M., Paradiso, S., Partridge, B., Reinecke, M., Suur-Uski, A. -S., Svalheim, T. L., Tavagnacco, D., Thommesen, H., Watts, D. J., Wehus, I. K., Zacchei, A.

论文摘要

我们提出了一种用于在全球端到端范围(BP)框架内实现的CMB观测值的贝叶斯校准算法,并将其应用于Planck低频仪器(LFI)数据。遵循最新的普朗克分析,我们将全日制依赖性增益分解为三个正交组件的总和:一个绝对校准项,所有检测器共有;一个时间独立的术语在检测器之间可能有所不同;一个时间依赖的组件可以在一个小时的指向周期之间变化。然后,通过Gibbs采样对全局信号模型中的所有其他参数进行有条件采样。仅使用轨道偶极子作为参考源对绝对校准进行采样,而使用完整的天空信号(包括轨道和太阳CMB偶极子,CMB波动以及前景贡献)对两个相对增益组件进行采样。我们讨论了影响增益估计的数据的各个方面,包括偶极/偏振四极性脱位和仪器增益中的异常跳跃。将我们的解决方案与以前的管道进行比较,我们一般发现良好的一致性,与Planck DR4相比,相对偏差为-0.67%(-0.84%)的30 GHz,44 GHz的相对偏差为44 GHz,44 GHz的相对偏差为44 GHz和-0.03%(-0.64%)的相对偏差为0.12%(-0.04%)。我们发现的偏差在预期的误差范围内,我们将它们归因于数据使用情况的差异和管道之间的一般方法。特别是,BP校准是在全球执行的,从而导致更好的频率一致性。此外,在BP分析中积极使用了WMAP观测值,该分析破坏了Planck数据集中的脱落,并与WMAP更好地吻合。尽管我们的演示和算法目前针对LFI处理,但该过程可完全推广到其他实验。

We present a Bayesian calibration algorithm for CMB observations as implemented within the global end-to-end BeyondPlanck (BP) framework, and apply this to the Planck Low Frequency Instrument (LFI) data. Following the most recent Planck analysis, we decompose the full time-dependent gain into a sum of three orthogonal components: One absolute calibration term, common to all detectors; one time-independent term that can vary between detectors; and one time-dependent component that is allowed to vary between one-hour pointing periods. Each term is then sampled conditionally on all other parameters in the global signal model through Gibbs sampling. The absolute calibration is sampled using only the orbital dipole as a reference source, while the two relative gain components are sampled using the full sky signal, including the orbital and Solar CMB dipoles, CMB fluctuations, and foreground contributions. We discuss various aspects of the data that influence gain estimation, including the dipole/polarization quadrupole degeneracy and anomalous jumps in the instrumental gain. Comparing our solution to previous pipelines, we find good agreement in general, with relative deviations of -0.67% (-0.84%) for 30 GHz, 0.12% (-0.04%) for 44 GHz and -0.03% (-0.64%) for 70 GHz, compared to Planck DR4 (Planck 2018). The deviations we find are within expected error bounds, and we attribute them to differences in data usage and general approach between the pipelines. In particular, the BP calibration is performed globally, resulting in better inter-frequency consistency. Additionally, WMAP observations are used actively in the BP analysis, which breaks degeneracies in the Planck data set and results in better agreement with WMAP. Although our presentation and algorithm are currently oriented toward LFI processing, the procedure is fully generalizable to other experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源