论文标题

长期规律性的二维Navier-Stokes-Poisson方程

Long-term regularity of two dimensional Navier-Stokes-Poisson equations

论文作者

Sun, Changzhen

论文摘要

该手稿致力于2-D Navier-Stokes-Poisson系统的长期规律性。我们允许初始密度接近常数,并且初始速度的潜在部分与重新固定的粘度参数$ \ varepsilon $独立于小,而与$ \ varepsilon $相比,初始速度的旋转部分被认为很小。然后,我们证明系统的寿命$ t^{\ varepsilon} $满足$ t^{\ varepsilon}> \ varepsilon^{ - (1- \ vartheta)} $,其中小常数$ \ vartheta $是在某些合适的空间中的初始扰动大小。正常形式的转化和经典的抛物线能量估计是证明的主要成分。

This manuscript is devoted to the long-term regularity of the 2-d Navier-Stokes-Poisson system. We allow the initial density to be close to a constant and the potential part of the initial velocity to be small independently of the rescaled viscosity parameter $\varepsilon$ while the rotational part of the initial velocity is assumed to be small compared to $\varepsilon$. We then show that the lifespan of the system $T^{\varepsilon}$ satisfies $T^{\varepsilon}>\varepsilon^{-(1-\vartheta)}$, where the small constant $\vartheta$ is the size of the initial perturbation in some suitable space. The normal form transformation and the classical parabolic energy estimates are the main ingredients of the proof.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源