论文标题

量子深场:数据驱动的波函数,电子密度产生和雾化能量预测和推断机器学习

Quantum deep field: data-driven wave function, electron density generation, and atomization energy prediction and extrapolation with machine learning

论文作者

Tsubaki, Masashi, Mizoguchi, Teruyasu

论文摘要

深度神经网络(DNN)已用于成功预测基于Kohn--Sham密度功能理论(KS-DFT)计算的分子特性。尽管该预测是快速准确的,但我们认为KS-DFT的DNN模型不仅必须预测性质,而且还提供了分子的电子密度。这封信提供了量子深场(QDF),该字段通过在大规模数据集中学习雾化能量,为电子密度提供了无监督但端到端物理信息的建模。 QDF在雾化能量预测,产生有效的电子密度并表现出外推时表现良好。我们的QDF实现可在https://github.com/masashitsubaki/quantumdeepfield_molecule上获得。

Deep neural networks (DNNs) have been used to successfully predict molecular properties calculated based on the Kohn--Sham density functional theory (KS-DFT). Although this prediction is fast and accurate, we believe that a DNN model for KS-DFT must not only predict the properties but also provide the electron density of a molecule. This letter presents the quantum deep field (QDF), which provides the electron density with an unsupervised but end-to-end physics-informed modeling by learning the atomization energy on a large-scale dataset. QDF performed well at atomization energy prediction, generated valid electron density, and demonstrated extrapolation. Our QDF implementation is available at https://github.com/masashitsubaki/QuantumDeepField_molecule.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源