论文标题

Skyrme-hartree-fock-bogoliubov质量模型3D网格:三轴形状的效果

Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D Mesh: Effect of triaxial shape

论文作者

Scamps, Guillaume, Goriely, Stephane, Olsen, Erik, Bender, Michael, Ryssens, Wouter

论文摘要

在天体物理或基于地球条件下核反应和放射性衰变的建模需要详细了解所有核的质量。基于核能密度功能(EDF)的微观质量模型可以描述性,并用于提供此信息。内在对称性破坏的概念对于EDF方法的预测能力至关重要,但由于调整大约两打参数的计算需求,通常不会由质量模型最大程度地利用最大的质量模型。我们报告了第一步,以弥合目前对单个核和大规模模型研究的差距之间的差距:我们提出了一种新的基于Skyrme-EDF的模型,该模型是使用三维坐标空间表示进行调整的,这是首次允许在调整过程中轴向和三十二十一个偏差。为了弥补后者带来的计算成本的大幅增长,我们采用了多层神经网络委员会来对参数空间的目标函数进行建模,并指导我们达到总体最佳拟合。所得的质量模型BSKG1是用EDF模型独立于神经网络计算的。它在2457个已知keV的2457个已知质量上产生均方根(RMS)偏差,并且在884测量的电荷半径为0.024 fm的RMS偏差。

The modeling of nuclear reactions and radioactive decays in astrophysical or earth-based conditions requires detailed knowledge of the masses of essentially all nuclei. Microscopic mass models based on nuclear energy density functionals (EDFs) can be descriptive and used to provide this information. The concept of intrinsic symmetry breaking is central to the predictive power of EDF approaches, yet is generally not exploited to the utmost by mass models because of the computational demands of adjusting up to about two dozen parameters to thousands of nuclear masses. We report on a first step to bridge the gap between what is presently feasible for studies of individual nuclei and large-scale models: we present a new Skyrme-EDF-based model that was adjusted using a three-dimensional coordinate-space representation, for the first time allowing for both axial and triaxial deformations during the adjustment process. To compensate for the substantial increase in computational cost brought by the latter, we have employed a committee of multilayer neural networks to model the objective function in parameter space and guide us towards the overall best fit. The resulting mass model BSkG1 is computed with the EDF model independently of the neural network. It yields a root mean square (rms) deviation on the 2457 known masses of 741 keV and an rms deviation on the 884 measured charge radii of 0.024 fm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源