论文标题
爆发星的磁盘中的粘性加热和边界层积聚
Viscous Heating and Boundary Layer Accretion in the Disk of Outbursting Star FU Orionis
论文作者
论文摘要
语境。 Fu Orionis是原型的Fuor Star,这是年轻恒星物体(YSO)的子类,经历了快速亮丽的事件,通常在数天的时间标准中获得4-6个幅度。这种亮度通常与积聚的大量增加有关。从行星和恒星到超大型黑洞的天体物理学中最普遍的过程之一。我们介绍了Fu Ori偶然环境的多波段干涉测量值,包括YSO的第一个J波段干涉测量值。目标。我们研究了Fu Orionis周围积聚磁盘的内部最多区域的形态和温度梯度。我们旨在表征磁盘的加热机制,并评论触发过程的潜在爆发过程。方法。 Chara阵列上最近对MIRC-X仪器的升级允许对YSOS进行第一个双波段J和H观察结果。使用高达331 m的基线,我们提供了YSO的高角度分辨率数据,涵盖了近红外频段J,H和K。结果。我们在空间上解析了磁盘的最内部天文单位,并确定内磁盘的温度梯度的指数为$ t = r^{ - 0.74 \ pm0.02} $。这与理论工作一致,该工作预测$ t = r^{ - 0.75} $用于积极积聚,稳态磁盘,这是只能通过磁盘内的粘性加热来获得的值。我们找到一个磁盘,该磁盘以$ 0.015 \ pm0.007 $ au的价格延伸至恒星表面,其中温度为$ 5800 \ pm700 $ k表示边界层积聚。我们发现一个磁盘以$ 32 \ pm4^\ circ $,其小轴位置角度为$ 34 \ pm11^\ circ $。
Context. FU Orionis is the archetypal FUor star, a subclass of young stellar object (YSO) that undergo rapid brightening events, often gaining 4-6 magnitudes on timescales of days. This brightening is often associated with a massive increase in accretion; one of the most ubiquitous processes in astrophysics from planets and stars to super-massive black holes. We present multi-band interferometric observations of the FU Ori circumstellar environment, including the first J-band interferometric observations of a YSO. Aims. We investigate the morphology and temperature gradient of the inner-most regions of the accretion disk around FU Orionis. We aim to characterise the heating mechanisms of the disk and comment on potential outburst triggering processes. Methods. Recent upgrades to the MIRC-X instrument at the CHARA array allowed the first dual-band J and H observations of YSOs.Using baselines up to 331 m, we present high angular resolution data of a YSO covering the near-infrared bands J, H, and K. The unprecedented spectral range of the data allows us to apply temperature gradient models to the innermost regions of FU Ori. Results. We spatially resolve the innermost astronomical unit of the disk and determine the exponent of the temperature gradient of the inner disk to $T=r^{-0.74\pm0.02}$. This agrees with theoretical work that predicts $T = r^{-0.75}$ for actively accreting, steady state disks, a value only obtainable through viscous heating within the disk. We find a disk which extends down to the stellar surface at $0.015\pm0.007$ au where the temperature is found to be $5800\pm700$ K indicating boundary layer accretion. We find a disk inclined at $32\pm4^\circ$ with a minor-axis position angle of $34\pm11^\circ$.