论文标题
贝叶斯的宇宙剪切数据建模
Bayesian forward modelling of cosmic shear data
论文作者
论文摘要
我们提出了一种从宇宙剪切数据中推断出宇宙物质密度场以及镜头和物质功率谱的贝叶斯分层建模方法。该方法使用宇宙结构形成的物理模型来推断物理上合理的宇宙结构,这说明了重力进化的物质分布和轻孔效应的非高斯特征。我们使用逼真的模拟剪切数据测试和验证我们的框架,表明该方法恢复了无偏的物质分布以及正确的镜头和物质功率谱。虽然宇宙学是在此测试中固定的,并且该方法采用了先前的功率谱,但我们证明了镜头结果对实际功率谱敏感,而当它与以前的情况不同时。在这种情况下,密度场样品是用偏离先验的功率谱生成的,该方法恢复了真正的镜头功率谱。该方法还恢复了整个天空的物质功率谱,但是正如目前所实现的那样,由于没有施加各向异性,因此无法确定径向功率。总而言之,我们的方法从宇宙剪切数据中提供了对暗物质分布的物理上合理的推断,从而使我们能够提取超出两点统计数据的信息并利用宇宙学领域的完整信息内容。
We present a Bayesian hierarchical modelling approach to infer the cosmic matter density field, and the lensing and the matter power spectra, from cosmic shear data. This method uses a physical model of cosmic structure formation to infer physically plausible cosmic structures, which accounts for the non-Gaussian features of the gravitationally evolved matter distribution and light-cone effects. We test and validate our framework with realistic simulated shear data, demonstrating that the method recovers the unbiased matter distribution and the correct lensing and matter power spectrum. While the cosmology is fixed in this test, and the method employs a prior power spectrum, we demonstrate that the lensing results are sensitive to the true power spectrum when this differs from the prior. In this case, the density field samples are generated with a power spectrum that deviates from the prior, and the method recovers the true lensing power spectrum. The method also recovers the matter power spectrum across the sky, but as currently implemented, it cannot determine the radial power since isotropy is not imposed. In summary, our method provides physically plausible inference of the dark matter distribution from cosmic shear data, allowing us to extract information beyond the two-point statistics and exploiting the full information content of the cosmological fields.