论文标题
施瓦茨柴尔德背景上相对论流体的一类平衡算法
A class of well-balanced algorithms for relativistic fluids on a Schwarzschild background
论文作者
论文摘要
为了在Schwarzschild弯曲的背景下在球形对称性中的可压缩流体的演变,我们设计了一类平衡的数值算法,具有准确性的一阶或二阶。我们同时处理相对论的汉堡模型和相对论的Euler-Schwarzschild模型,并利用可用于这些模型的固定解决方案的显式或隐式形式。我们的方案遵循有限的卷方法并保留固定解决方案。重要的是,它们使我们能够研究此类流动的全球渐近行为,并确定流体质量密度和速度场的渐近行为。
For the evolution of a compressible fluid in spherical symmetry on a Schwarzschild curved background, we design a class of well-balanced numerical algorithms with first-order or second-order of accuracy. We treat both the relativistic Burgers-Schwarzschild model and the relativistic Euler-Schwarzschild model and take advantage of the explicit or implicit forms available for the stationary solutions of these models. Our schemes follow the finite volume methodology and preserve the stationary solutions. Importantly, they allow us to investigate the global asymptotic behavior of such flows and determine the asymptotic behavior of the mass density and velocity field of the fluid.