论文标题
单个块状球体以无限的环境流体定居:以稳定且不稳定的唤醒状态模拟的基准
A single oblate spheroid settling in unbounded ambient fluid: a benchmark for simulations in steady and unsteady wake regimes
论文作者
论文摘要
我们已经对单个块球体进行了光谱/光谱元素模拟,并在无限的环境流体中沉降了小的几何纵横比,用于涵盖各种运动方案(稳定的垂直,稳定,稳定的,垂直,垂直周期性和奇数)的一系列galileo数字。提供的高保真数据包括粒子数量(混乱情况中的统计数据)以及流量图和压力图。参考数据可以用作其他数值方法的附加基准,在该方法中,针对特定目标参数点的仔细的网格收敛研究通常很有用。我们进一步描述了特定沉浸式边界方法的扩展(Uhlmann,J。Comput。Phys,209(2):448--476,2005),以实现非球形颗粒的跟踪。最后,在各种空间和时间分辨率下,使用这种浸泡的边界方法计算参考案例,并在球体颗粒运动的各种方案上讨论网格收敛。交叉验证结果可以作为借助类似的不合格方法设计模拟设计的指南,涉及galileo数为$ {\ cal o}(100)$的球体颗粒。
We have performed spectral/spectral-element simulations of a single oblate spheroid with small geometrical aspect ratio settling in an unbounded ambient fluid, for a range of Galileo numbers covering the various regimes of motion (steady vertical, steady oblique, vertical periodic and chaotic). The high-fidelity data provided includes particle quantities (statistics in the chaotic case), as well as flow profiles and pressure maps. The reference data can be used as an additional benchmark for other numerical approaches, where a careful grid convergence study for a specific target parameter point is often useful. We further describe an extension of a specific immersed boundary method (Uhlmann, J. Comput. Phys, 209(2):448--476, 2005) to enable the tracking of non-spherical particles. Finally, the reference cases are computed with this immersed boundary method at various spatial and temporal resolutions, and grid convergence is discussed over the various regimes of spheroidal particle motion. The cross-validation results can serve as a guideline for the design of simulations with the aid of similar non-conforming methods, involving spheroidal particles with Galileo numbers of ${\cal O}(100)$.