论文标题

使用卷积变异自动编码器来预测动作法数据的创伤后健康结果

Using Convolutional Variational Autoencoders to Predict Post-Trauma Health Outcomes from Actigraphy Data

论文作者

Cakmak, Ayse S., Thigpen, Nina, Honke, Garrett, Alday, Erick Perez, Rad, Ali Bahrami, Adaimi, Rebecca, Chang, Chia Jung, Li, Qiao, Gupta, Pramod, Neylan, Thomas, McLean, Samuel A., Clifford, Gari D.

论文摘要

抑郁症和创伤后应激障碍(PTSD)是通常与经历创伤事件有关的精神病。通过非侵入性技术(例如基于活动的算法)估算心理健康状况可以帮助确定成功的早期干预措施。在这项工作中,我们使用了从1113个人中捕获的运动级智能手表后的运动活动。卷积变分自动编码器(VAE)架构用于从四个星期的行动术数据中进行无监督的特征提取。通过使用VAE潜在变量和参与者的创伤前身体健康状况作为特征,Logistic回归分类器在接收器操作特征曲线(AUC)下达到了0.64的区域,以估计心理健康结果。结果表明,在长期研究中,VAE模型是对心理健康结果进行精神健康结果的有前途的方法。

Depression and post-traumatic stress disorder (PTSD) are psychiatric conditions commonly associated with experiencing a traumatic event. Estimating mental health status through non-invasive techniques such as activity-based algorithms can help to identify successful early interventions. In this work, we used locomotor activity captured from 1113 individuals who wore a research grade smartwatch post-trauma. A convolutional variational autoencoder (VAE) architecture was used for unsupervised feature extraction from four weeks of actigraphy data. By using VAE latent variables and the participant's pre-trauma physical health status as features, a logistic regression classifier achieved an area under the receiver operating characteristic curve (AUC) of 0.64 to estimate mental health outcomes. The results indicate that the VAE model is a promising approach for actigraphy data analysis for mental health outcomes in long-term studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源