论文标题
集团的分布式清单
Tight Distributed Listing of Cliques
论文作者
论文摘要
最近在理解分布式计算的交通拥堵模型中发现问题的复杂性格局最近取得了很多进展。但是,到目前为止,在这一领域很少有紧密的界限。对于三角形(即3个单位)列表,最佳$ \ tilde {o}(n^{1/3})$ - 圆形分布式算法是由Chang等人构建的。 Eden等人的最新作品[Disc 2019]和Censor-Hillel等人的〜[PODC 2020]显示了Sublinear算法,以$ k_p $的列入$ k_p $ - 列入$ p \ geq 4 $,但仍然在上限和已知的下限问题之间留下显着的差距。 在本文中,我们完全缩小了这一差距。我们证明,对于每个$ p \ geq 4 $,都有一个$ \ tilde {o}(n^{1-2/p})$ - 圆形分布式算法,该算法列出了通信网络中的所有$ p $ -cliques $ k_p $。由于$ \tildeΩ(n^{1-2/p})$ - Fischer等人的圆下下限,我们的算法是\ emph {optimal},直到一个多粒子因子,即使在忙碌的集体模型中也是如此。因此,Chang等人的三角列表算法[SODA 2019,PODC 2019],因此我们的结果表明,对于所有$ p $,$ k_p $的圆形复杂性在所有$ p $中都是相同的,在Electest and ExpeSted Clique and Expected Clique Models中,在$\\htildeθ($ \\tildeθ(n^n^n^{1-2/p/p})中。 对于$ p = 4 $,我们的结果还与$ \tildeΩ(n^{1/2})$下限$ k_4 $ - \ emph {检测},Czumaj和Konrad [Disc 2018],这意味着对于$ k_4 $ $ k_4 $的圆形复杂性是$ k_4 $等量的conseast模型。
Much progress has recently been made in understanding the complexity landscape of subgraph finding problems in the CONGEST model of distributed computing. However, so far, very few tight bounds are known in this area. For triangle (i.e., 3-clique) listing, an optimal $\tilde{O}(n^{1/3})$-round distributed algorithm has been constructed by Chang et al.~[SODA 2019, PODC 2019]. Recent works of Eden et al.~[DISC 2019] and of Censor-Hillel et al.~[PODC 2020] have shown sublinear algorithms for $K_p$-listing, for each $p \geq 4$, but still leaving a significant gap between the upper bounds and the known lower bounds of the problem. In this paper, we completely close this gap. We show that for each $p \geq 4$, there is an $\tilde{O}(n^{1 - 2/p})$-round distributed algorithm that lists all $p$-cliques $K_p$ in the communication network. Our algorithm is \emph{optimal} up to a polylogarithmic factor, due to the $\tildeΩ(n^{1 - 2/p})$-round lower bound of Fischer et al.~[SPAA 2018], which holds even in the CONGESTED CLIQUE model. Together with the triangle-listing algorithm by Chang et al.~[SODA 2019, PODC 2019], our result thus shows that the round complexity of $K_p$-listing, for all $p$, is the same in both the CONGEST and CONGESTED CLIQUE models, at $\tildeΘ(n^{1 - 2/p})$ rounds. For $p=4$, our result additionally matches the $\tildeΩ(n^{1/2})$ lower bound for $K_4$-\emph{detection} by Czumaj and Konrad [DISC 2018], implying that the round complexities for detection and listing of $K_4$ are equivalent in the CONGEST model.