论文标题

湍流中的能量通量

Variable energy flux in turbulence

论文作者

Verma, Mahendra K.

论文摘要

在三维的流体动力湍流中,强迫尺寸为恒定的能量通量$π_U$从大尺度流到中间尺度,然后转到小尺度。众所周知,对于多尺度能量注入和耗散,能量通量$π_U$随尺度而变化。在这篇综述中,我们描述了这一原则,并展示了该一般框架对于描述各种湍流现象有用。与Kolmogorov的光谱相比,能量光谱在涉及准静态磁流体,Ekman摩擦,稳定分层,磁性水力动力学和溶液的湍流中陡峭。然而,在湍流热对流中,在不及时的分层湍流中,例如雷利 - 泰勒湍流,在剪切湍流中,由于波数使用波数的能量通量增加,能量光谱具有相反的行为。此外,我们简要描述了可变能量通量在量子湍流中的作用,在二元流体湍流中,包括时间依赖性的Landau-Ginzburg和Cahn-Hillianrd方程以及在Euler湍流中的作用。

In three-dimensional hydrodynamic turbulence forced at large length scales, a constant energy flux $ Π_u $ flows from large scales to intermediate scales, and then to small scales. It is well known that for multiscale energy injection and dissipation, the energy flux $Π_u$ varies with scales. In this review we describe this principle and show how this general framework is useful for describing a variety of turbulent phenomena. Compared to Kolmogorov's spectrum, the energy spectrum steepens in turbulence involving quasi-static magnetofluid, Ekman friction, stable stratification, magnetohydrodynamics, and solution with dilute polymer. However, in turbulent thermal convection, in unstably stratified turbulence such as Rayleigh-Taylor turbulence, and in shear turbulence, the energy spectrum has an opposite behaviour due to an increase of energy flux with wavenumber. In addition, we briefly describe the role of variable energy flux in quantum turbulence, in binary-fluid turbulence including time-dependent Landau-Ginzburg and Cahn-Hillianrd equations, and in Euler turbulence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源