论文标题

识别和跟踪模拟中的气泡和下降:用于获取大小,谱系,分解和合并统计的工具箱

Identifying and tracking bubbles and drops in simulations: a toolbox for obtaining sizes, lineages, and breakup and coalescence statistics

论文作者

Chan, Wai Hong Ronald, Dodd, Michael S., Johnson, Perry L., Moin, Parviz

论文摘要

对两相流中气泡和滴大小分布的知识对于表征广泛的现象(包括燃烧器点火,声纳通信和云形成)很重要。驱动背景流的物理机制也推动了这些分布的时间演变。对于可靠测量此进化,从而量化了界面分辨率流量模拟中的基本机制,必须进行分散相的准确且可靠的识别和跟踪算法。传统上,单个气泡的识别依赖于用于识别连接区域的算法。这种传统算法可能对虚假结构的存在敏感。提出了一种成本效益的改进,以最大程度地提高体积精度,同时最大程度地识别虚假气泡和滴剂的识别。准确的识别方案对于区分较大尺寸比的气泡和滴对至关重要。需要及时跟踪已确定的气泡和滴剂,以获得尺寸分布的演变的分解和聚结统计数据,包括分解和合并频率,以及父母和子女气泡和滴剂大小的概率分布。提出了一种基于质量保护的算法,以使用不一定来自连续的时间步长的模拟快照来构建气泡和掉落谱系。然后,这些谱系用于检测破裂和聚结事件,并获得所需的统计数据。准确识别大型比率气泡和滴对,可以在较大尺寸范围内准确检测分手和合并事件。这些算法一起,可以洞悉泡泡和落下形成和进化的实际重要性流动的机制。

Knowledge of bubble and drop size distributions in two-phase flows is important for characterizing a wide range of phenomena, including combustor ignition, sonar communication, and cloud formation. The physical mechanisms driving the background flow also drive the time evolution of these distributions. Accurate and robust identification and tracking algorithms for the dispersed phase are necessary to reliably measure this evolution and thereby quantify the underlying mechanisms in interface-resolving flow simulations. The identification of individual bubbles and drops traditionally relies on an algorithm used to identify connected regions. This traditional algorithm can be sensitive to the presence of spurious structures. A cost-effective refinement is proposed to maximize volume accuracy while minimizing the identification of spurious bubbles and drops. An accurate identification scheme is crucial for distinguishing bubble and drop pairs with large size ratios. The identified bubbles and drops need to be tracked in time to obtain breakup and coalescence statistics that characterize the evolution of the size distribution, including breakup and coalescence frequencies, and the probability distributions of parent and child bubble and drop sizes. An algorithm based on mass conservation is proposed to construct bubble and drop lineages using simulation snapshots that are not necessarily from consecutive time-steps. These lineages are then used to detect breakup and coalescence events, and obtain the desired statistics. Accurate identification of large-size-ratio bubble and drop pairs enables accurate detection of breakup and coalescence events over a large size range. Together, these algorithms enable insights into the mechanisms behind bubble and drop formation and evolution in flows of practical importance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源