论文标题
某些非等温流体模型的温度阳性
Positivity of temperature for some non-isothermal fluid models
论文作者
论文摘要
我们通过结合能量变异方法,适当的本构关系和经典的热力学定律来建立描述流体热力学的三个部分微分方程模型。此外,通过使用明确的代数方法,我们在某些特殊条件下显示了由绝对温度$θ$和密度$ρ$组成的某些数量的最大/最小原理,这又给出了温度的积极性。这个重要的事实意味着我们模型的热力学一致性。
We establish three partial differential equation models describing the thermodynamics of the fluid, by combining the energetic variational approach, appropriate constitutive relations, and classical thermodynamics laws. What is more, by using a clear algebraic approach, we show a maximum/minimum principle for some quantities composed by the absolute temperature $θ$ and density $ρ$ under some special conditions, which in turn gives the positivity of the temperature. This important fact implies the thermodynamic consistency for our models.