论文标题
多重降解单图像超分辨率的快速且健壮的级联模型
Fast and Robust Cascade Model for Multiple Degradation Single Image Super-Resolution
论文作者
论文摘要
单图像超分辨率(SISR)是过去几年受到更多关注的低级计算机视觉问题之一。当前的方法主要基于利用深度学习模型的力量和优化技术来扭转降解模型。由于其硬度,各向异性变形的各向同性模糊或高斯人被主要考虑。在这里,我们通过在真实的相机运动中包括出现的大型非高斯模糊来扩大这种情况。我们的方法利用退化模型,并提出了卷积神经网络(CNN)级联模型的新公式,其中每个网络子模块都受到限制以求解特定的降级:降解或提升采样。提出了一个新的密集连接的CNN架构,其中每个子模块的输出使用一些外部知识限制,以将其集中在其特定任务上。到目前为止,我们知道,在SISR中,域知识与模块级的使用是一种新颖性。为了适应最好的模型,最终的子模块可以解决先前子模块传播的残差误差。我们使用SISR中的三个最新技术(SOTA)数据集检查了模型,并将结果与SOTA模型进行了比较。结果表明,我们的模型是唯一能够管理我们更广泛的变形集的模型。此外,我们的模型克服了所有当前的SOTA方法,用于一组标准的变形集。就计算负载而言,我们的模型在效率方面还改善了两个最接近的竞争对手。尽管该方法是非盲文,并且需要对模糊内核的估计,但它显示出模糊内核估计错误的稳健性,使其成为盲目模型的良好替代品。
Single Image Super-Resolution (SISR) is one of the low-level computer vision problems that has received increased attention in the last few years. Current approaches are primarily based on harnessing the power of deep learning models and optimization techniques to reverse the degradation model. Owing to its hardness, isotropic blurring or Gaussians with small anisotropic deformations have been mainly considered. Here, we widen this scenario by including large non-Gaussian blurs that arise in real camera movements. Our approach leverages the degradation model and proposes a new formulation of the Convolutional Neural Network (CNN) cascade model, where each network sub-module is constrained to solve a specific degradation: deblurring or upsampling. A new densely connected CNN-architecture is proposed where the output of each sub-module is restricted using some external knowledge to focus it on its specific task. As far we know this use of domain-knowledge to module-level is a novelty in SISR. To fit the finest model, a final sub-module takes care of the residual errors propagated by the previous sub-modules. We check our model with three state of the art (SOTA) datasets in SISR and compare the results with the SOTA models. The results show that our model is the only one able to manage our wider set of deformations. Furthermore, our model overcomes all current SOTA methods for a standard set of deformations. In terms of computational load, our model also improves on the two closest competitors in terms of efficiency. Although the approach is non-blind and requires an estimation of the blur kernel, it shows robustness to blur kernel estimation errors, making it a good alternative to blind models.