论文标题
减轻量子错误的虚拟蒸馏
Virtual Distillation for Quantum Error Mitigation
论文作者
论文摘要
当代量子计算机具有相对较高的噪声,即使使用大量Qubits,也很难使用它们进行有用的计算。预计量子误差校正最终将在大尺度上启用容忍性量的量子计算,但在此之前,有必要使用替代策略来减轻错误的影响。我们提出了一项近期友好的策略,以纠缠和测量嘈杂状态$ρ$的$ M $副本来减轻错误。这使我们能够相对于具有巨大减少误差的状态估计期望值,$ρ^m/ \ mathrm {tr}(ρ^m)$,而无需明确准备它,因此名称为“虚拟蒸馏”。随着$ M $的增加,该状态迅速接近最接近$ρ$的纯净状态。我们分析了虚拟蒸馏的有效性,并发现它在许多制度中受到这种纯状态的行为(对应于$ρ$的主要特征向量)。我们从数值上证明,虚拟蒸馏能够通过多个数量级抑制错误,并解释随着系统大小的增长,如何增强这种效果。最后,我们表明,即使没有设备噪声,该技术也可以改善随机量子算法的收敛性。
Contemporary quantum computers have relatively high levels of noise, making it difficult to use them to perform useful calculations, even with a large number of qubits. Quantum error correction is expected to eventually enable fault-tolerant quantum computation at large scales, but until then it will be necessary to use alternative strategies to mitigate the impact of errors. We propose a near-term friendly strategy to mitigate errors by entangling and measuring $M$ copies of a noisy state $ρ$. This enables us to estimate expectation values with respect to a state with dramatically reduced error, $ρ^M/ \mathrm{Tr}(ρ^M)$, without explicitly preparing it, hence the name "virtual distillation". As $M$ increases, this state approaches the closest pure state to $ρ$, exponentially quickly. We analyze the effectiveness of virtual distillation and find that it is governed in many regimes by the behavior of this pure state (corresponding to the dominant eigenvector of $ρ$). We numerically demonstrate that virtual distillation is capable of suppressing errors by multiple orders of magnitude and explain how this effect is enhanced as the system size grows. Finally, we show that this technique can improve the convergence of randomized quantum algorithms, even in the absence of device noise.