论文标题
关于CFT模量空间中的理性点
On Rational Points in CFT Moduli Spaces
论文作者
论文摘要
通过在二维形成式磁场理论的模量空间中寻找理性点的动机,我们研究了如何在此分布增强的对称代数的点。我们首先使用$ s^1 $目标空间进行详细的目标空间研究,并发现迄今未知功能。例如,我们发现扭曲差距的消失虽然对于$ s^1 $示例是正确的,但并不能自动遵循增强的对称点在模量空间中密集。然后,我们通过扰动圆环Orbifold基因座来探索K3上的超对称Sigma模型。尽管我们对K3模量空间中增强对称点的分布的分布没有明确的结论,但我们对手性电流如何在共形扰动理论下出现和消失进行了一些观察。
Motivated by the search for rational points in moduli spaces of two-dimensional conformal field theories, we investigate how points with enhanced symmetry algebras are distributed there. We first study the bosonic sigma-model with $S^1$ target space in detail and uncover hitherto unknown features. We find for instance that the vanishing of the twist gap, though true for the $S^1$ example, does not automatically follow from enhanced symmetry points being dense in the moduli space. We then explore the supersymmetric sigma-model on K3 by perturbing away from the torus orbifold locus. Though we do not reach a definite conclusion on the distribution of enhanced symmetry points in the K3 moduli space, we make several observations on how chiral currents can emerge and disappear under conformal perturbation theory.