论文标题
失去痕迹找到动态的牛顿或普朗克常数
Losing the trace to find dynamical Newton or Planck constants
论文作者
论文摘要
我们表明,将爱因斯坦方程的痕量部分促进到微不足道的身份导致牛顿常数是一个整合常数。因此,在这种表述中,牛顿常数是一种全球动力学自由度,也是量化和量子波动的对象。这类似于在爱因斯坦方程的痕量部分以不同方式丢失的宇宙常数发生的情况。我们引入了这些修改后的爱因斯坦方程的约束变异表述。然后,利用与Henneaux-teitelboim作用的类比,我们为非模块化重力构建了导致这些动力学的不同通用作用。动态牛顿常数的倒数是在时空上集成的RICCI标量的典型共轭。令人惊讶的是,代替动态的牛顿常数可以用动态的planck常数制定等效理论。最后,我们表明,类似轴的场可以起到引力牛顿常数甚至量子普朗克常数的作用。
We show that promoting the trace part of the Einstein equations to a trivial identity results in the Newton constant being an integration constant. Thus, in this formulation the Newton constant is a global dynamical degree of freedom which is also a subject to quantization and quantum fluctuations. This is similar to what happens to the cosmological constant in the unimodular gravity where the trace part of the Einstein equations is lost in a different way. We introduce a constrained variational formulation of these modified Einstein equations. Then, drawing on analogies with the Henneaux-Teitelboim action for unimodular gravity, we construct different general-covariant actions resulting in these dynamics. The inverse of dynamical Newton constant is canonically conjugated to the Ricci scalar integrated over spacetime. Surprisingly, instead of the dynamical Newton constant one can formulate an equivalent theory with a dynamical Planck constant. Finally, we show that an axion-like field can play a role of the gravitational Newton constant or even of the quantum Planck constant.