论文标题

(5D RG-Flow)在热带雨林中的树木

(5d RG-flow) Trees in the Tropical Rain Forest

论文作者

van Beest, Marieke, Bourget, Antoine, Eckhard, Julius, Schafer-Nameki, Sakura

论文摘要

可以通过圆压缩和质量变形从6D SCFT中获得5D超符号理论(SCFTS)。超人物质和rg-flow的连续脱钩会产生后代5D scfts的脱钩树。在本文中,我们确定了整个解耦树的磁箭和哈斯图,该图表编码了5D SCFTS的希格斯分支。这项任务的核心是Arxiv:2008.05577中的方法,该方法从二元组合多边形(GTPS)双重到5-大的网络/热带曲线开始,提供了磁Quivers的系统和简洁的推导及其Hasse图。 GTP描述中的分离很简单,并概括了曲曲面多边形的曲线的标准翻牌跃迁。我们将这种方法应用于大型5D KK理论,并为其后代计算希格斯分支。特别是我们确定所有等级2 5D SCFT的去耦。对于每棵树,我们还确定了来自磁砂的风味对称代数,包括非简洁的风味对称性。

5d superconformal field theories (SCFTs) can be obtained from 6d SCFTs by circle compactification and mass deformation. Successive decoupling of hypermultiplet matter and RG-flow generates a decoupling tree of descendant 5d SCFTs. In this paper we determine the magnetic quivers and Hasse diagrams, that encode the Higgs branches of 5d SCFTs, for entire decoupling trees. Central to this undertaking is the approach in arXiv:2008.05577, which, starting from the generalized toric polygons (GTPs) dual to 5-brane webs/tropical curves, provides a systematic and succinct derivation of magnetic quivers and their Hasse diagrams. The decoupling in the GTP description is straightforward, and generalizes the standard flop transitions of curves in toric polygons. We apply this approach to a large class of 5d KK-theories, and compute the Higgs branches for their descendants. In particular we determine the decoupling tree for all rank 2 5d SCFTs. For each tree, we also identify the flavor symmetry algebras from the magnetic quivers, including non-simply-laced flavor symmetries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源