论文标题

SOFTFEM:重新访问二阶椭圆算子的光谱有限元近似

SoftFEM: revisiting the spectral finite element approximation of second-order elliptic operators

论文作者

Deng, Quanling, Ern, Alexandre

论文摘要

我们提出,数学上提出,分析并研究了一种新的方法,用于二阶椭圆算子频谱的有限元近似。主要思想是通过从标准刚度双线性形式从网格接口的梯度跳跃上减去最小二乘罚款,以减少问题的刚度。这种惩罚双线性形式类似于在各种情况下稳定有限元近似值的已知技术。惩罚项旨在抑制频谱中的高频,因此在这里通过负系数加权。所得的近似技术称为软体模式,因为它降低了问题的刚度。 SoftFem比标准Galerkin FEM的两个关键优势是改善离散光谱上部特征值的近似值,并减少刚度矩阵的状况数量。我们在柔软参数上加重了稳定双线性形式的柔软参数,以维持软型双线性形式的固定性。然后,我们证明SoftFem提供的最佳收敛速率与特征值和特征向量的标准Galerkin FEM近似相同。接下来,我们比较使用Galerkin FEM和SoftFem时获得的离散特征值。最后,对1D Laplace特征值问题的线性软体FEM的详细分析为软性参数提供了明智的选择。有了这种选择,刚度的降低比与多项式程度线性缩放。各种数值实验说明了使用SoftFem而不是Galerkin FEM的好处。

We propose, analyze mathematically, and study numerically a novel approach for the finite element approximation of the spectrum of second-order elliptic operators. The main idea is to reduce the stiffness of the problem by subtracting a least-squares penalty on the gradient jumps across the mesh interfaces from the standard stiffness bilinear form. This penalty bilinear form is similar to the known technique used to stabilize finite element approximations in various contexts. The penalty term is designed to dampen the high frequencies in the spectrum and so it is weighted here by a negative coefficient. The resulting approximation technique is called softFEM since it reduces the stiffness of the problem. The two key advantages of softFEM over the standard Galerkin FEM are to improve the approximation of the eigenvalues in the upper part of the discrete spectrum and to reduce the condition number of the stiffness matrix. We derive a sharp upper bound on the softness parameter weighting the stabilization bilinear form so as to maintain coercivity for the softFEM bilinear form. Then we prove that softFEM delivers the same optimal convergence rates as the standard Galerkin FEM approximation for the eigenvalues and the eigenvectors. We next compare the discrete eigenvalues obtained when using Galerkin FEM and softFEM. Finally, a detailed analysis of linear softFEM for the 1D Laplace eigenvalue problem delivers a sensible choice for the softness parameter. With this choice, the stiffness reduction ratio scales linearly with the polynomial degree. Various numerical experiments illustrate the benefits of using softFEM over Galerkin FEM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源