论文标题
$ \ Mathfrak {B} $的诱导动作 - 定期有限的Martingale空间上的Volterra操作员
Induced actions of $\mathfrak{B}$-Volterra operators on regular bounded martingale spaces
论文作者
论文摘要
在Banach Lattice $ e $上,带有订单连续规范的正面操作员$ t: $ \ mathfrak {b} $连接$ \ textbf {0} $ in $ \ textbf {0} $ in $ \ textbf {1} $ in $ \ mathfrak {b} $ in $ \ mathfrak {b} $ in $ \ mathfrak in $ \ mathfrak中的线性序列$ξ$被称为正向过滤。远期过滤可以用来提高$ \ mathfrak {b} $ - Volterra运算符$ t $从基础Banach Lattice $ e $的动作,以对新的常规连续操作员$ \ hat { \ Mathcal {M} _ {r}(ξ)$上的Banach晶格$ \ Mathcal {M} _ {r}(R}(ξ)$的$ e $上的常规限制性martingales的$,对应于$ξ$。在本文中,我们研究了这些行动的特性。远期过滤组的集合由删除正向过滤的一阶投影,并将其余订单预测转移到$ \ textbf {0} $的函数固定。该功能从规范上诱导了一个常规的偏移式opering•textbf {s} $之间的规范连续移动操作员之间的两个常规限制性martingales的Banach晶格。此外,运算符$ \ hat {t}_松身价$和$ \ textbf {s} $ collsute。利用这一事实,我们构建了一个分类限制空间$ \ MATHCAL {M} _ {t,ξ} $,称为Pair $(T,ξ)$的关联空间。我们介绍了布尔代数,抽象的烈士和巴纳克晶格之间的新联系。
A positive operator $T:E\to E$ on a Banach lattice $E$ with an order continuous norm is said to be $\mathfrak{B}$-Volterra with respect to a Boolean algebra $\mathfrak{B}$ of order projections of $E$ if the bands canonically corresponding to elements of $\mathfrak{B}$ are left fixed by $T$. A linearly ordered sequence $ξ$ in $\mathfrak{B}$ connecting $\textbf{0}$ to $\textbf{1}$ is called a forward filtration. A forward filtration can be to used to lift the action of the $\mathfrak{B}$-Volterra operator $T$ from the underlying Banach lattice $E$ to an action of a new norm continuous operator $\hat{T}_ξ\colon \mathcal{M}_{r}(ξ) \to \mathcal{M}_{r}(ξ)$ on the Banach lattice $\mathcal{M}_{r}(ξ)$ of regular bounded martingales on $E$ corresponding to $ξ$. In the present paper, we study properties of these actions. The set of forward filtrations are left fixed by a function which erases the first order projection of a forward filtration and which shifts the remaining order projections towards $\textbf{0}$. This function canonically induces a norm continuous shift operator $\textbf{s}$ between two Banach lattices of regular bounded martingales. Moreover, the operators $\hat{T}_ξ$ and $\textbf{s}$ commute. Utilizing this fact with inductive limits, we construct a categorical limit space $\mathcal{M}_{T,ξ}$ which is called the associated space of the pair $(T,ξ)$. We present new connections between theories of Boolean algebras, abstract martingales and Banach lattices.