论文标题
nilpotent Lie代数的等级
Gradings for nilpotent Lie algebras
论文作者
论文摘要
我们提出了一种建设性的方法来实现谎言代数的无扭转等级。我们的主要结果是计算最大分级。鉴于谎言代数,使用其最大分级,我们列举了其所有无扭转等级及其正等级。作为应用程序,我们将等级分类为低维度,我们考虑了Heintze组的枚举,并提供了寻找用于非变化的$ \ ell^{q,p} $ cohomology的界限。
We present a constructive approach to torsion-free gradings of Lie algebras. Our main result is the computation of a maximal grading. Given a Lie algebra, using its maximal grading we enumerate all of its torsion-free gradings as well as its positive gradings. As applications, we classify gradings in low dimension, we consider the enumeration of Heintze groups, and we give methods to find bounds for non-vanishing $\ell^{q,p}$ cohomology.