论文标题
定期驱动的量子系统及其光谱特征的动力对称性
Dynamical symmetries of periodically-driven quantum systems and their spectroscopic signatures
论文作者
论文摘要
量子系统的空间对称性会导致在光谱法(例如选择规则和黑暗状态)中产生重要影响。由于在最近的实验中实现的光 - 物质相互作用的强度的提高,我们研究了一组动态的量子系统对称对称性,这些量子系统会受到强烈的周期性驾驶。基于Floquet响应理论,我们研究了旋转,颗粒孔,手性和时间反转对称性及其在光谱中的特征,包括对称性保护的黑暗状态(SPD),浮球带选择规则(FBSR)和对称性诱导的透明度(SIT)。具体而言,动态旋转对称性建立了黑暗状态条件,以及无弹性光散射过程的选择规则。颗粒 - 孔对称性引入了与对称性相关的浮子状态的暗状态,也引入了跨跨十字交叉处的透明效应。手性对称性和时间反转对称性并不意味着暗状态,而可以将其结合到粒子孔对称性中。我们的预测揭示了当量子系统达到强光耦合方案时,新的物理现象对于光学或等离子田腔中的超导量子,原子和分子以及光力学系统很重要。
Spatial symmetries of quantum systems leads to important effects in spectroscopy, such as selection rules and dark states. Motivated by the increasing strength of light-matter interaction achieved in recent experiments, we investigate a set of dynamically-generalized symmetries for quantum systems, which are subject to a strong periodic driving. Based on Floquet response theory, we study rotational, particle-hole, chiral and time-reversal symmetries and their signatures in spectroscopy, including symmetry-protected dark states (spDS), a Floquet band selection rule (FBSR), and symmetry-induced transparency (siT). Specifically, a dynamical rotational symmetry establishes dark state conditions, as well as selection rules for inelastic light scattering processes; a particle-hole symmetry introduces dark states for symmetry related Floquet states and also a transparency effect at quasienergy crossings; chiral symmetry and time-reversal symmetry alone do not imply dark state conditions, but can be combined to the particle-hole symmetry. Our predictions reveal new physical phenomena when a quantum system reaches the strong light-matter coupling regime, important for superconducting qubits, atoms and molecules in optical or plasmonic field cavities, and optomechanical systems.