论文标题
使用富含梯度的机器学习控制稳定流体弹球
Stabilization of the fluidic pinball with gradient-enriched machine learning control
论文作者
论文摘要
我们稳定了三个旋转缸,流体弹球的簇,并具有自动梯度增强的机器学习算法。控制法律以开放和闭环的方式命令每个气缸的旋转速度。这些定律是根据三个依赖较丰富的搜索空间中与目标稳定解决方案的平均距离进行了优化的。首先,通过稳定的对称强迫进行稳定。其次,我们允许不对称稳定强迫。第三,我们确定了使用九个速度探针下游的最佳反馈控制器。如预期的那样,控制性能随搜索空间的每个概括而增加。令人惊讶的是,开放环和闭环最佳控制器都包括不对称强迫,它超过了对称强迫。有趣的是,通过相量控制和不对称稳定强迫的结合可以实现最佳性能。我们假设非对称强迫是名义上对称配置的干草叉分叉动力学的典型特征。关键推动器是通过梯度搜索增强的自动化机器学习算法:开环参数优化的探索梯度方法和用于反馈优化的梯度增强的机器学习控制(GMLC)。 GMLC比以前采用的基因编程控制更快地学习控制法。 GMLC源代码可在线免费获得。
We stabilize the flow past a cluster of three rotating cylinders, the fluidic pinball, with automated gradient-enriched machine learning algorithms. The control laws command the rotation speed of each cylinder in an open- and closed-loop manner. These laws are optimized with respect to the average distance from the target steady solution in three successively richer search spaces. First, stabilization is pursued with steady symmetric forcing. Second, we allow for asymmetric steady forcing. And third, we determine an optimal feedback controller employing nine velocity probes downstream. As expected, the control performance increases with every generalization of the search space. Surprisingly, both open- and closed-loop optimal controllers include an asymmetric forcing, which surpasses symmetric forcing. Intriguingly, the best performance is achieved by a combination of phasor control and asymmetric steady forcing. We hypothesize that asymmetric forcing is typical for pitchfork bifurcated dynamics of nominally symmetric configurations. Key enablers are automated machine learning algorithms augmented with gradient search: explorative gradient method for the open-loop parameter optimization and a gradient-enriched machine learning control (gMLC) for the feedback optimization. gMLC learns the control law significantly faster than previously employed genetic programming control. The gMLC source code is freely available online.