论文标题
与物种扩散耦合可塑性的建模框架
A modeling framework for coupling plasticity with species diffusion
论文作者
论文摘要
本文提出了一个建模框架---数学模型和计算框架 - - 研究由于宿主材料中化学物种的存在和运输而导致塑料材料的响应。这种建模框架对于从锂离子电池,水泥材料的水分扩散,金属中的氢扩散到在严重的负载 - 卸载机制下的土壤巩固的各种问题很重要。数学模型结合了文献中报道的有关(弹性和塑性)材料特性如何变化的实验观察结果。同样,该模型解释了单向(运输会影响变形,但反之亦然)以及变形和传输子问题之间的双向耦合。所得的耦合方程不适合分析溶液;因此,我们提出了一个可靠的计算框架,用于获得数值解决方案。鉴于流行的数值公式不会产生非负解,因此计算框架使用了尊重物理约束(例如非负浓度)的基于优化的非负公式。为了完整性,我们还将显示出当代运输求解器通常产生的负浓度的效果和传播,以对变形和浓度场的总体预测。值得注意的是,扩散过程的各向异性加剧了这些非物理违规行为。使用代表性的数值示例,我们将讨论浓度场如何影响降解固体的塑性变形。基于这些数值示例,我们还讨论了塑料区域如何由于物质降解而传播。为了说明所提出的计算框架的执行方式,我们报告了各种性能指标,例如优化迭代和解决时间。
This paper presents a modeling framework---mathematical model and computational framework---to study the response of a plastic material due to the presence and transport of a chemical species in the host material. Such a modeling framework is important to a wide variety of problems ranging from Li-ion batteries, moisture diffusion in cementitious materials, hydrogen diffusion in metals, to consolidation of soils under severe loading-unloading regimes. The mathematical model incorporates experimental observations reported in the literature on how (elastic and plastic) material properties change because of the presence and transport of a chemical species. Also, the model accounts for one-way (transport affects the deformation but not vice versa) and two-way couplings between deformation and transport subproblems. The resulting coupled equations are not amenable to analytical solutions; so, we present a robust computational framework for obtaining numerical solutions. Given that popular numerical formulations do not produce nonnegative solutions, the computational framework uses an optimized-based nonnegative formulation that respects physical constraints (e.g., nonnegative concentrations). For completeness, we will also show the effect and propagation of the negative concentrations, often produced by contemporary transport solvers, into the overall predictions of deformation and concentration fields. Notably, anisotropy of the diffusion process exacerbates these unphysical violations. Using representative numerical examples, we will discuss how the concentration field affects plastic deformations of a degrading solid. Based on these numerical examples, we also discuss how plastic zones spread because of material degradation. To illustrate how the proposed computational framework performs, we report various performance metrics such as optimization iterations and time-to-solution.