论文标题

使用分析流体动力学对石英 - 晶体 - 微生量实验的定量重新抑制

Quantitative reintepretation of quartz-crystal-microbalance experiments with adsorbed particles using analytical hydrodynamics

论文作者

Schofield, Marc Meléndez, Buscalioni, Rafael Delgado

论文摘要

尽管是软物质研究中的基本工具,但迄今为止,液体中离散大分子的分析是石英晶体微生体(QCM)分析。当前,使用基于有效的电路,有效的弹簧和具有丰富拟合参数的陷阱的弹性模型,使用临时框架对声学信号进行定性解释。然而,由于其极高的敏感性,QCM技术承诺成为一种准确的预测工具。使用不稳定的低雷诺流体动力学,我们得出了吸附离散球的声学阻抗的分析表达式。我们的理论已成功验证了3D模拟和大量实验结果,其中涵盖了十多年的蛋白质,病毒,脂质体,大量纳米颗粒的研究,尺寸范围从少数到数百个纳米范围不等。没有拟合常数的出色一致性清楚地表明,声学反应主要由流体动力阻抗支配,因此,对物理化学力的二次贡献解密将首先需要QCM的流体动力解释。

Despite being a fundamental tool in soft matter research, quartz crystal microbalance (QCM) analyses of discrete macromolecules in liquid so far lack a firm theoretical basis. Currently, acoustic signals are qualitatively interpreted using ad-hoc frameworks based on effective electrical circuits, effective springs and trapped-solvent models with abundant fitting parameters. Nevertheless, due to its extreme sensitivity, the QCM technique pledges to become an accurate predictive tool. Using unsteady low Reynolds hydrodynamics we derive analytical expressions for the acoustic impedance of adsorbed discrete spheres. Our theory is successfully validated against 3D simulations and a plethora of experimental results covering more than a decade of research on proteins, viruses, liposomes, massive nanoparticles, with sizes ranging from few to hundreds of nanometers. The excellent agreement without fitting constants clearly indicates that the acoustic response is dominated by the hydrodynamic impedance, thus, deciphering the secondary contribution of physico-chemical forces will first require a hydrodynamic-reinterpretation of QCM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源