论文标题

R3中Blaschke表面的渐近线

Blaschke's asymptotic lines of surfaces in R3

论文作者

Barajas-Sichacá, Martín, Garcia, Ronaldo, Vargas, Andrés

论文摘要

在本文中,我们考虑了3个空间中常规表面的Blaschke的渐近线(也称为仿生线)。我们研究了二进制微分方程,这些方程定义了Blaschke在仿射尖点附近的椭圆形和双曲线区域中的渐近区域,以及在仿射脐带点处。我们还描述了欧几里得抛物线片附近的仿生渐近线,包括欧几里得扁平点。

In this paper we consider the Blaschke's asymptotic lines (also called affine asymptotic lines) of regular surfaces in 3-space. We study the binary differential equations defining Blaschke's asymptotic lines in the elliptic and hyperbolic regions of the surface near affine cusp points and to at affine umbilic points. We also describe the affine asymptotic lines near the Euclidean parabolic set including the Euclidean flat umbilic points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源