论文标题

通过无线边缘网络联合学习的低延迟学习的编码计算

Coded Computing for Low-Latency Federated Learning over Wireless Edge Networks

论文作者

Prakash, Saurav, Dhakal, Sagar, Akdeniz, Mustafa, Yona, Yair, Talwar, Shilpa, Avestimehr, Salman, Himayat, Nageen

论文摘要

联合学习可以从客户节点的数据中培训一个全局模型,而无需数据共享和将客户端数据移至集中服务器。由于异质性和随机波动的计算功率和沟通链接质量,因此在多访问边缘计算(MEC)网络中的联合学习的表现遭受了缓慢的收敛性。我们提出了一个新颖的编码计算框架CodedFedl,该框架将结构化的编码冗余注入联合学习,以减轻散乱者并加快训练程序。通过随机傅立叶特征有效利用分布式内核来启用非线性联合学习的编码计算,该计算将训练任务转换为计算有利的分布式线性回归。此外,客户端通过通过其本地数据集进行编码来生成本地奇偶校验数据集,而服务器组合它们以获取全局奇偶校验数据集。来自全球奇偶校验数据集的梯度可以补偿训练期间散落的梯度,从而加快了融合的速度。为了最大程度地减少MEC服务器上的时期截止日期时间,我们通过利用计算的统计属性以及通信延迟,提供了一种可访问的方法,用于查找培训过程中客户端处理过程中的编码量以及客户处理过程的本地数据点的数量。当客户与服务器共享其本地奇偶校验数据集时,我们还表征了数据隐私中的泄漏。我们通过将CodedFedl视为随机梯度下降算法来分析CodedFEDL在简化假设下的收敛速率和迭代复杂性。此外,我们使用实用的网络参数和基准数据集进行数值实验,与基准方案相比,CodeDFEDL将整体培训时间加快了高达$ 15 \ times的$ $。

Federated learning enables training a global model from data located at the client nodes, without data sharing and moving client data to a centralized server. Performance of federated learning in a multi-access edge computing (MEC) network suffers from slow convergence due to heterogeneity and stochastic fluctuations in compute power and communication link qualities across clients. We propose a novel coded computing framework, CodedFedL, that injects structured coding redundancy into federated learning for mitigating stragglers and speeding up the training procedure. CodedFedL enables coded computing for non-linear federated learning by efficiently exploiting distributed kernel embedding via random Fourier features that transforms the training task into computationally favourable distributed linear regression. Furthermore, clients generate local parity datasets by coding over their local datasets, while the server combines them to obtain the global parity dataset. Gradient from the global parity dataset compensates for straggling gradients during training, and thereby speeds up convergence. For minimizing the epoch deadline time at the MEC server, we provide a tractable approach for finding the amount of coding redundancy and the number of local data points that a client processes during training, by exploiting the statistical properties of compute as well as communication delays. We also characterize the leakage in data privacy when clients share their local parity datasets with the server. We analyze the convergence rate and iteration complexity of CodedFedL under simplifying assumptions, by treating CodedFedL as a stochastic gradient descent algorithm. Furthermore, we conduct numerical experiments using practical network parameters and benchmark datasets, where CodedFedL speeds up the overall training time by up to $15\times$ in comparison to the benchmark schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源