论文标题
H纹状体对称函数
H-chromatic symmetric functions
论文作者
论文摘要
我们介绍了$ h $ -Chromation对称函数,$ x_ {g}^{h} $,使用$ h $ - 颜色图$ g $来定义Stanley的色度对称函数的概括。我们说,如果$ x_ {g_1}^{h} = x_ {g_2}^{h} $,并使用此想法来研究$ h $ -Chromation Symmetric函数的唯一性结果,则具有$ h $ h $ poshite $ h $ h $是$ h $ h $ h $是完整的,我们说两个图$ g_1 $和$ g_2 $是$ h $ - 巧妙等于等效的,如果$ x_ {g_1}^{h} = x_ {g_2}^{h} $,并使用此想法来研究$ h $ chromation Symmetric功能的唯一性结果,并具有特定的commentric功能,并以$ h $ $ h $为图。我们还表明,对称函数空间的几个经典基础,即单一对称函数,功率总和对称函数和基本对称函数,可以实现为$ h $ chrostic对称函数。我们以一些猜想和开放问题结尾。
We introduce $H$-chromatic symmetric functions, $X_{G}^{H}$, which use the $H$-coloring of a graph $G$ to define a generalization of Stanley's chromatic symmetric functions. We say two graphs $G_1$ and $G_2$ are $H$-chromatically equivalent if $X_{G_1}^{H} = X_{G_2}^{H}$, and use this idea to study uniqueness results for $H$-chromatic symmetric functions, with a particular emphasis on the case $H$ is a complete bipartite graph. We also show that several of the classical bases of the space of symmetric functions, i.e. the monomial symmetric functions, power sum symmetric functions, and elementary symmetric functions, can be realized as $H$-chromatic symmetric functions. We end with some conjectures and open problems.