论文标题
神经网络是最佳估计器,以在重男性效果上进行边缘化
Neural networks as optimal estimators to marginalize over baryonic effects
论文作者
论文摘要
许多不同的研究表明,大量的宇宙学信息都存在于小的非线性量表上。不幸的是,要利用这些信息存在两个挑战。首先,我们不知道最佳的估计器,该估计器将使我们能够检索最大信息。其次,重大理解方式,重大和鲜为人知的影响。理想情况下,我们想使用一个估算器,该估计量可以提取最大的宇宙学信息,同时将重男性效应边缘化。在这项工作中,我们表明神经网络可以实现这一目标。我们利用了已知最大宇宙学信息量的数据:功率谱和2D高斯密度场。我们还具有简化的重型效应和训练神经网络来污染数据,以预测宇宙学参数的价值。对于此数据,我们表明神经网络可以1)提取最大可用的宇宙学信息,2)在男性效应方面边缘化,3)提取埋葬在Baryonic Physics主导的政权中的宇宙学信息。我们还表明,神经网络学习了他们接受过培训的数据的先验。我们得出的结论是,最大化宇宙学实验的科学回报的有前途的策略是在最先进的数值模拟上训练神经网络,具有不同的优势和实施Baryonic效应。
Many different studies have shown that a wealth of cosmological information resides on small, non-linear scales. Unfortunately, there are two challenges to overcome to utilize that information. First, we do not know the optimal estimator that will allow us to retrieve the maximum information. Second, baryonic effects impact that regime significantly and in a poorly understood manner. Ideally, we would like to use an estimator that extracts the maximum cosmological information while marginalizing over baryonic effects. In this work we show that neural networks can achieve that. We made use of data where the maximum amount of cosmological information is known: power spectra and 2D Gaussian density fields. We also contaminate the data with simplified baryonic effects and train neural networks to predict the value of the cosmological parameters. For this data, we show that neural networks can 1) extract the maximum available cosmological information, 2) marginalize over baryonic effects, and 3) extract cosmological information that is buried in the regime dominated by baryonic physics. We also show that neural networks learn the priors of the data they are trained on. We conclude that a promising strategy to maximize the scientific return of cosmological experiments is to train neural networks on state-of-the-art numerical simulations with different strengths and implementations of baryonic effects.