论文标题
二元分类的线性扩张渗透感感知
Linear Dilation-Erosion Perceptron for Binary Classification
论文作者
论文摘要
在这项工作中,我们简要修改了用于二进制分类任务的减少的扩张渗透感(R-DEP)模型。然后,我们介绍所谓的线性扩张 - 渗透感(L-DEP),其中在应用形态算子应用之前应用线性转换。此外,我们建议通过最大程度地限制正则铰链功能来训练L-DEP分类器,但受到凹入限制的限制。给出一个简单的示例是出于说明目的。
In this work, we briefly revise the reduced dilation-erosion perceptron (r-DEP) models for binary classification tasks. Then, we present the so-called linear dilation-erosion perceptron (l-DEP), in which a linear transformation is applied before the application of the morphological operators. Furthermore, we propose to train the l-DEP classifier by minimizing a regularized hinge-loss function subject to concave-convex restrictions. A simple example is given for illustrative purposes.